一些映象不动点定理与迭代序列收敛性
发布时间:2018-06-27 07:17
本文选题:模糊度量空间 + Φ-压缩映象 ; 参考:《渤海大学》2017年硕士论文
【摘要】:本文首先在完备的模糊度量空间中建立了两类Φ-压缩映象的一些不动点定理,并使用模糊度量空间Φ-压缩映象不动点定理讨论了起源于动态规划的一类泛函方程解的存在与唯一性.同时在轨道完备度量空间中研究Ciric-Altman型映象不动点和带有对称函数的非唯一不动点的存在性,证明了几个新的不动点定理.其次在实赋范线性空间研究渐近伪压缩型映象的迭代序列收敛性问题,在较弱条件下建立了有限族渐近伪压缩型映象不动点具有误差的迭代序列的强收敛定理,同时也给出几个例子说明本文结果的有效性与广泛性.然后使用新的分析方法,在实赋范线性空间研究广义渐近S-半压缩型映象的迭代序列收敛性问题,在较弱条件下建立了有限族广义渐近S-半压缩型映象不动点具有误差的迭代序列的强收敛定理.最后在实Banach空间中研究了Lipschitz的k-次增生算子方程x+Tx=f解的带误差的迭代序列收敛性与稳定性问题,并给出了新的收敛率的估计式,从而推广和改进了有关文献中的相应结果.
[Abstract]:In this paper, we first establish some fixed point theorems for two classes of 桅 -contractive mappings in complete fuzzy metric spaces. By using the fixed point theorem of 桅 -contractive mapping in fuzzy metric space, the existence and uniqueness of solutions for a class of functional equations originating from dynamic programming are discussed. At the same time, we study the existence of fixed points for Ciric-Altman type mappings and non-unique fixed points with symmetric functions in orbital complete metric spaces, and prove some new fixed point theorems. Secondly, the convergence problem of iterative sequences for asymptotically pseudo-contractive type mappings is studied in real normed linear spaces. Under weaker conditions, the strong convergence theorems for iterative sequences with fixed points with errors for finite families of asymptotically pseudo-contractive type mappings are established. At the same time, several examples are given to illustrate the validity and extensibility of the results. Then the iterative sequence convergence problem of generalized asymptotically S-semicontractive type mappings is studied in real normed linear spaces by using a new analytical method. A strong convergence theorem for iterative sequences with errors of fixed points for generalized asymptotically S- semicontractive type mappings of finite families is established under weaker conditions. Finally, the convergence and stability of iterative sequences with errors for Lipschitz's k- subaccretive operator equation x T _ XF are studied in real Banach spaces, and a new estimate of convergence rate is given, which generalizes and improves the corresponding results in relevant literatures.
【学位授予单位】:渤海大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O177.91
【参考文献】
相关期刊论文 前10条
1 赵美娜;张树义;赵亚莉;;渐近伪压缩型映象不动点的迭代逼近[J];数学的实践与认识;2016年15期
2 张树义;林媛;;Φ-φ-型压缩映象不动点的存在性[J];北华大学学报(自然科学版);2016年01期
3 石惠敏;王元恒;;渐近伪压缩映像不动点的三步带误差修正迭代逼近[J];系统科学与数学;2014年01期
4 张树义;;k-次增生与k-次散逸算子方程带误差的迭代序列收敛率的估计[J];应用泛函分析学报;2010年04期
5 谷峰;;两个有限族一致L-Lipschitz映象的平行迭代算法的强收敛定理[J];数学学报;2010年06期
6 倪仁兴;余丽云;;逐次渐近Φ-强半压缩型有限算子簇的多步迭代程序的收敛性[J];数学学报;2010年03期
7 王绍荣;熊明;;关于增生算子方程的具误差的Ishikawa迭代序列的收敛率估计[J];应用泛函分析学报;2009年02期
8 胡良根;;渐近半压缩映象的收敛性定理[J];宁波大学学报(理工版);2008年04期
9 张树义;衣立红;邵颖;;Altman型映象的公共不动点[J];杭州师范大学学报(自然科学版);2008年06期
10 向长合;;一致L-Lipschitz的渐近拟伪压缩型映象迭代收敛的充要条件[J];系统科学与数学;2008年04期
,本文编号:2073124
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2073124.html