基于LOLA数据的月球光照模型及应用研究
[Abstract]:Lunar surface illumination is one of the important factors in the research of lunar surface evolution. The temperature distribution of the lunar surface is the main energy source of the future human lunar surface activity, and it is also one of the important factors to decide the location of the future lunar surface construction research base. Solar radiation is one of the important factors that affect the spatial weathering of lunar surface. After long-term spatial weathering, lunar soil particles will change in microstructure and form the unique properties of lunar soil. For the interpretation of the thermal emission spectrum of lunar remote sensing exploration, the study of lunar thermal evolution model also needs the solar radiation of the lunar surface as an important analytical factor. Therefore, it is very important to construct an analytical model of the characteristics of full moon illumination and study the illumination characteristics of the whole moon and local areas. At present, the study of lunar illumination is mainly located at the polar pole of the moon, lacking the study of the moon's mid-latitude and even full-moon illumination characteristics, and the study of the lunar thermal evolution is also lack of the corresponding illumination information reference. It is one of the problems to be solved urgently in lunar scientific research to construct high-resolution full-moon light information database. The main work of this paper is as follows: 1. A geometric illumination model without considering terrain is constructed. The calculated results show that at a certain time of illumination, the solar height angle decreases from the direct point to the polar circle, and there is a time when the north and south poles are completely illuminated, and in the long time range, the total moonlight illumination ratio is between 50% and 58%. The duration of positive illumination is longer than that of moon backside, and the illumination rate in high latitude is higher than that in middle and low latitude, and it is the largest at latitude 88.5 掳, and the period of illumination rate variation is about 19 years. Based on the existing two-pole illumination model, the illumination model for the whole moon is established. Based on LOLA topographic data, a full-moon-based database is created for one year. The results show that the maximum illumination rate in one year is 91.69 and there is a permanent shadow region. The lunar sea on the front of the moon is an area with better illumination conditions at the middle and low latitudes, while the ridge with a higher topography in the polar region has a good illumination condition. Based on the improved model, the illumination characteristics of the lunar polar region and the middle and low latitudes are studied with the full consideration of the precession period. The results show that: (1) there is no permanent illumination region at the two poles of the moon, and there is a permanent shadow region. For the first time, the illumination distribution in the polar region of the half-precession period is given. In a precession period, the area of permanent shadow area at the north and south poles is 7215km2 and 1683km2, respectively. The optimum illumination rate is 91.46% and 90.98%, respectively. The longest continuous shadow time is 4.2 days and 5.0 days, and the longest continuous illumination time is 231.0 days and 203.9 days, respectively. Compared with previous studies, the maximum illumination rate in the Arctic region is increased by 1.41%, and the area of the permanent shadow area in the Antarctic region is increased by 854 km2. (2) the illumination characteristics of the middle and low latitudes are studied in detail, as represented by the Aristarchus Plateau. The illumination variation of typical landforms is analyzed. The illumination conditions of the Tycho impact crater, the Marius Hills area of the East China Sea, the Rain Sea and the Moscow Sea are briefly described, and suggestions are provided for the selection of the landing area and the location of the lunar evolution. In this paper, the distribution of illumination rate at high spatial resolution in the whole moon range is obtained, which can not only be used as the basis for the selection of landing sites for the lunar exploration plan, the formulation of scientific targets and the engineering design in the future. It also provides a reference for the future study of lunar thermal evolution.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P184.5
【相似文献】
相关期刊论文 前10条
1 张威巍;游雄;宋国民;;一种面向地貌因子的光照模型[J];测绘科学;2009年05期
2 胡香;游雄;武玉国;;体云的光照模型及其算法实现[J];测绘科学技术学报;2006年03期
3 高永攀,黄曦;云体绘制中的光照模型综述[J];电子科技;2005年05期
4 杨晋吉,宋万寿;对辐射度光照模型的改进[J];华南师范大学学报(自然科学版);1997年02期
5 李宏宁;白廷柱;曹峰梅;马帅;许凯达;杨卫平;冯洁;;用于场景仿真的红外成像模型及其有效性分析[J];红外与毫米波学报;2010年01期
6 李子巍;淮永建;付慧;;基于光作用的虚拟植物生长模拟与可视化研究[J];北京林业大学学报;2013年04期
7 陈蕾;邓孺孺;彭小鹃;;TM影像与DEM的地形光照模型配准法研究——以广州市为例[J];热带地理;2008年03期
8 韩明峰;Phong光照模型中单位反射光线矢量的快速计算研究[J];微机发展;1999年01期
9 吴文渊;沈晓华;邹乐君;苏楠;孔凡立;董有浦;;遥感影像定向光照增强及构造解译[J];遥感学报;2012年03期
10 毕渔民,付忠传,杨巨庆;CIG颜色计算的算法及实现[J];哈尔滨师范大学自然科学学报;1999年05期
相关会议论文 前1条
1 谢文军;陈皓;刘晓平;;基于GPU的实时水面模拟方法研究[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(上册)[C];2008年
相关博士学位论文 前2条
1 郝平;基于图像灰度的自由曲面重构算法研究[D];大连理工大学;2005年
2 赵辉煌;SMT焊点图像处理及焊点三维质量信息提取技术研究[D];西安电子科技大学;2010年
相关硕士学位论文 前10条
1 罗斯韦;基于数字星球的大规模真实感球形海洋的建模与绘制[D];电子科技大学;2014年
2 董明杰;细节增强的混合体绘制光照模型的应用研究[D];重庆邮电大学;2016年
3 张吉栋;基于LOLA数据的月球光照模型及应用研究[D];吉林大学;2017年
4 刘凯华;生物分子可视化及其光照模型的研究[D];吉林大学;2015年
5 扎西次仁;复杂场景中实时全局光照模型研究[D];北京邮电大学;2015年
6 张彩芳;复杂场景真实感渲染技术研究[D];哈尔滨工程大学;2008年
7 高海峰;基于球面调和理论及其相关技术的高级光照模型研究[D];合肥工业大学;2011年
8 耿洪碧;3D GIS可视化中光照技术的研究与实现[D];沈阳工业大学;2011年
9 赵铁梅;虚拟场景绘制加速技术研究及应用[D];西安电子科技大学;2012年
10 周伟峰;基于单目多幅图像的三维曲面重构研究[D];大连理工大学;2002年
,本文编号:2140043
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2140043.html