灰色系统理论在因果图故障诊断中的应用
[Abstract]:Fault diagnosis mainly studies how to detect, separate and identify the faults in the system, that is to say, to judge whether the faults occur, to locate the locations and types of the faults, and to determine the time and magnitude of the faults. Dynamic causality diagram is based on some obvious features (Boolean logic operation, probability theory, etc.), and the continuous optimization of reasoning algorithms about causal diagram makes it more and more widely used in system fault diagnosis. Based on causality diagram theory and the advantages of grey system theory, this paper aims at the uncertain factors existing in practical application, and puts it into the fault diagnosis of complex system to improve the efficiency of fault diagnosis. The main contents are as follows: (1) according to the prediction and analysis, the key steps of prevention are put forward, and the fault diagnosis and analysis of the system as a whole is carried out. First, the grey disaster prediction model is used to predict the year of frequent accidents, and the prediction accuracy of the model is high. Secondly, the maintenance of the system can be obtained according to the basic event importance analysis method in the causality diagram fault analysis, and the parts with the high importance can be selected for overhaul. But there are three kinds of traditional basic event importance. This paper considers introducing grey relation theory to get a more intuitionistic sort of basic event. The example shows that this method is reasonable. Finally, the prevention focus is put forward, and a reasonable and effective fault response scheme is made to reduce the occurrence of such accidents. (2) A minimal cut set of causality diagram represents a fault mode. Fault diagnosis based on causality diagram is usually based on its importance to detect the cause of failure. In this paper, fuzzy numbers are used to describe the probability of occurrence of events. According to the fuzzy importance of the basic events in causality diagram, grey relational analysis is introduced to judge the probability of occurrence of various fault modes. Therefore, the fault diagnosis space can be reduced. The method also solves the problem that the probability of intermediate events and basic events can not be ascertained due to the lack of fault information, and the relationship between basic events and intermediate events is difficult to determine.
【学位授予单位】:重庆师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:N941.5
【参考文献】
相关期刊论文 前10条
1 彭霜霜;王洪春;;基于因果图最小割集和最小径集在故障系统中的诊断[J];南京师范大学学报(工程技术版);2015年03期
2 曲彦光;张勤;朱群雄;;动态不确定因果图在化工系统动态故障诊断中的应用[J];智能系统学报;2015年03期
3 赵越;张勤;邓宏琛;董春玲;;DUCG在核电站二回路故障诊断中的应用[J];原子能科学技术;2014年S1期
4 董春玲;张勤;;用于不确定性故障诊断的权重逻辑推理算法研究[J];自动化学报;2014年12期
5 Chun-Ling Dong;Qin Zhang;Shi-Chao Geng;;A Modeling and Probabilistic Reasoning Method of Dynamic Uncertain Causality Graph for Industrial Fault Diagnosis[J];International Journal of Automation & Computing;2014年03期
6 杨佳婧;张勤;朱群雄;;动态不确定因果图在化工过程故障诊断中的应用[J];智能系统学报;2014年02期
7 赵红言;张君;张建强;;灰色关联分析法在电子设备故障树中的应用[J];实验室研究与探索;2014年03期
8 黎奇志;胡国平;赵红言;;加权灰色关联分析在故障诊断中的应用研究[J];微计算机信息;2012年07期
9 丁水汀;鲍梦瑶;;基于因果图的微小型涡喷发动机安全性分析(英文)[J];Transactions of Nanjing University of Aeronautics & Astronautics;2011年03期
10 姚成玉;张荧驿;王旭峰;陈东宁;;T-S模糊故障树重要度分析方法[J];中国机械工程;2011年11期
相关硕士学位论文 前7条
1 梁帆;因果图推理的改进及应用[D];重庆师范大学;2016年
2 张俊;基于灰色理论的变压器故障预测与评估[D];西华大学;2012年
3 李国志;基于因果图的灰色马氏链及其在智能信号控制灯中的应用研究[D];重庆师范大学;2010年
4 郑佩;基于案例推理的故障诊断技术研究[D];华中科技大学;2008年
5 郑蕊蕊;基于灰色系统理论的电力变压器故障诊断技术[D];吉林大学;2007年
6 李波;动态因果图用于汽油发动机故障智能诊断的理论及方法研究[D];重庆大学;2002年
7 王宏川;因果图推理及其应用研究[D];重庆大学;2002年
,本文编号:2143693
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2143693.html