青藏高原湖泊环境要素的多源遥感监测及其对气候变化响应
[Abstract]:The Qinghai Tibet Plateau, with its complex formation mechanism, unique geographical location, climate characteristics and geological and geomorphology, has become the focus of global geoscience. There are numerous lakes in the Qinghai Tibet Plateau, which are the highest, largest and largest inland lake area of the earth and Shanghai, which are used to monitor the dynamic changes of the lake environmental factors in the Qinghai Tibet Plateau by remote sensing and GIS technology. Further analysis of the response of various factors to climate change is of great significance for promoting the study of the water cycle and energy cycle of the Qinghai Tibet Plateau and the implementation of the sustainable development strategy of the Qinghai Tibet Plateau. Mooring area, lake water level, lake ice phenology and surface environmental factors include NDVI, snow cover and albedo. Using MOD09 surface reflectance products to extract Plateau Lake area through single band Shuangfeng valley value method; use T/P, Jason_1/2, ENVISAT, ICESat altimeter data to calculate the lake level in the Qinghai Tibet Plateau Based on the principle of height measurement; use MOD10 ice and snow products, The threshold method was used to extract the ice phenology and the freezing period of lake and lake in the Qinghai Tibet Plateau. NDVI, the snow cover and albedo used MOD09 surface reflectance products, MOD10 ice and snow products, and GLASS surface shortwave albedo products to be extracted. According to different ecological geographical areas, the characteristics and laws of the various elements of different geographical regions were analyzed. The characteristics of the 1970-2015 years' temperature, precipitation and evaporation in the Qinghai Tibet Plateau are analyzed, and the responses of various factors to climate change are analyzed in combination with the monitoring data of the hydrological and environmental factors of various lakes, and the response characteristics of different ecological regions are compared and analyzed. The conclusions are as follows: (1) the overall area of the Qinghai Tibet Plateau Lake area is expanded in the 2000-2015 year. The lake change rate is between -3.92km2/a and 14.82km2/a, the area of Lake area in the northern region is the strongest, the lake area is mainly concentrated in the south area. The lake level of the Qinghai Tibet Plateau is mostly above 4000m, the lake water level is rising, the water level change rate is from -1.480m/a to 1.038m/ a, and the lake is mainly distributed in the south of the lake. The changes in Lake area and water level are basically the same in Zangnan mountain area. (2) the Qinghai Tibet Plateau Lake begins to freeze from the beginning of November to mid December, and the ice is generally melted from mid March to early May and melts from mid March to early May and completely melts from mid April to early May. The freezing period is 175 days on average. The freezing period is 130 days on average; there are obvious regional differences in the lake ice phenology. The Northern Lake area begins with early freezing period, complete melting period late, long freezing period, late freezing period in the southern Lake area, early melting period, short freezing period, the change rate of lake ice sealing period from -4.28d/a to 7.34d/a, and the great change of the lake sealing period in the Northern Lake area. (3) snow cover over the Qinghai Tibet Plateau The cover from northwest to Southeast gradually decreases, and the snow cover rate of the Qinghai Tibet Plateau is decreasing in 2001-2015 years. The NDVI value of the Qinghai Tibet Plateau is gradually increasing from northwest to Southeast, and the NDVI of Qinghai Tibet Plateau is on the rise in 2001-2015 years, the rate of change is 0.0005/a, and the albedo of the Qinghai Tibet Plateau is low in the southeast and high in the northwest of the Qinghai Tibet Plateau, 2001-2010 The albedo of the surface of the Qinghai Tibet Plateau is a small trend in the year, the rate of change is -0.0014/a, the albedo has a good correlation with the snow cover rate and NDVI, the correlation coefficient is 0.737 and -0.806. (4) Qinghai Lake, the Yang Zhuoyong error is wrong, the color forest fault area is the most sensitive to temperature and water reduction in three lakes, Yang Zhuoyong is wrong and Qinghai Lake is the smallest. The response of the Yang Zhuo fault and the area of the color forest to the unit temperature change is greater than the response to the change of unit precipitation. The lake ice phenology is mainly influenced by temperature, precipitation and wind speed. The temperature is the main influencing factor, the increase of temperature or precipitation, the shortening of the freezing period of the lake, the increase of wind speed, and the prolongation of the freezing period. (5) the snow cover of the Qinghai Tibet Plateau Rate, NDVI and albedo have a good correlation with regional temperature and precipitation, the snow cover rate is negatively correlated with temperature, and there is a positive correlation with precipitation, and NDVI is positively correlated with temperature, and the correlation with precipitation is positive and negative according to the difference of precipitation in the region, and the albedo is negatively correlated with temperature and precipitation. There is obvious spatial difference in snow cover, NDVI and albedo with regional temperature and precipitation.
【学位授予单位】:山东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P332;P343.3
【相似文献】
相关期刊论文 前10条
1 陈志明;;青藏高原湖泊退缩及其气候意义[J];海洋与湖沼;1986年03期
2 杨文龙;;云南高原湖泊的开发与保护[J];云南环境科学;1993年01期
3 陈振楼;高原湖泊地球化学记录早期成岩改造过程的研究(摘要)[J];地质地球化学;1995年06期
4 子皿;张炜;;高原湖泊中的心灵栖居[J];人与自然;2012年11期
5 陈志明;西藏高原湖泊的成因[J];海洋与湖沼;1981年02期
6 ;贵州省第一部研究高原湖泊环境演化的专著《草海的演化》即将公开出版[J];贵州地质;1987年01期
7 项仁浩;应百才;;气象与高原湖泊鱼类生态组群和活动规律的关系[J];中国农业气象;1988年02期
8 褚新洛;陈银瑞;;云南高原湖泊鱼类区系的生物学特点及渔业利用的途径[J];资源开发与保护;1989年01期
9 曾昭璇;介绍《内蒙古高原湖泊与环境变迁》[J];地理学报;1992年01期
10 万玮;肖鹏峰;冯学智;李晖;马荣华;段洪涛;赵利民;;卫星遥感监测近30年来青藏高原湖泊变化[J];科学通报;2014年08期
相关会议论文 前6条
1 刘文连;张寿云;吴莉;段富平;邹国富;;高原湖泊综合治理的理论与实践——以云南省个旧市为例[A];中国科协2005年学术年会第38分会场、科学发展与土地资源节约和集约利用论文集[C];2005年
2 孙治旭;;云南高原湖泊农业面源污染防治方法初探[A];首届中国湖泊论坛论文集[C];2011年
3 杨瑞强;景传勇;江桂斌;;青藏高原湖泊鱼体持久性有机污染物研究[A];中国化学会第27届学术年会第02分会场摘要集[C];2010年
4 黄兴鹏;;对治理高原湖泊客船生活污染的思考[A];2004年船舶防污染学术年会论文集[C];2004年
5 陈毅峰;何德奎;陈宜瑜;;色林错模式与青藏高原湖泊的可持续发展[A];西部大开发 科教先行与可持续发展——中国科协2000年学术年会文集[C];2000年
6 杨丽源;李治滢;董明华;冉崇菲;邹宁宁;李绍兰;;云南高原湖泊异龙湖酵母菌活性研究[A];第五届全国微生物资源学术暨国家微生物资源平台运行服务研讨会论文摘要集[C];2013年
相关重要报纸文章 前10条
1 吴昊;青藏高原湖泊缘何迅速扩张?[N];中国矿业报;2011年
2 记者 瞿姝宁;在法制轨道上推进高原湖泊保护工作[N];云南日报;2014年
3 记者 马敏;云南省成立高原湖泊国际研究中心[N];中国化工报;2005年
4 刘娟;云南重点治理高原湖泊生态[N];西部时报;2007年
5 田逢春;建设高原湖泊国际研究中心[N];云南日报;2007年
6 冯孝忠;县领导检查开渔节暨高原湖泊水产品交易会筹备工作[N];玉溪日报;2008年
7 云南省环境保护厅湖泊处副处长 张召文;云南九大高原湖泊治理的复杂性艰巨性和长期性[N];云南经济日报;2011年
8 记者 岳晓琼;奋力推进工业转型升级 抓好高原湖泊保护治理[N];云南日报;2014年
9 记者 汪丽军;省九大高原湖泊水污染综合防治领导小组召开会议[N];云南日报;2006年
10 冯孝忠;江川县委中心组举行理论学习[N];玉溪日报;2010年
相关博士学位论文 前3条
1 杨渐;青藏高原湖泊微生物群落演替及其环境指示意义[D];中国地质大学;2015年
2 吕昌伟;内蒙古高原湖泊碳(氮、磷、硅)的地球化学特征[D];内蒙古大学;2008年
3 王小雷;云南高原湖泊近现代沉积环境变化研究[D];南京师范大学;2011年
相关硕士学位论文 前7条
1 陶然;高原湖泊湿地建设与运营管理模式研究[D];华中师范大学;2016年
2 王智颖;青藏高原湖泊环境要素的多源遥感监测及其对气候变化响应[D];山东师范大学;2017年
3 徐海涛;高原湖泊湖区可持续发展评价体系及模式研究[D];昆明理工大学;2011年
4 车向红;2000-2014年青藏高原湖泊动态遥感监测与分析[D];太原理工大学;2015年
5 王剑芳;云南高原湖泊湖区资源保护与利用及经济可持续发展研究[D];昆明理工大学;2005年
6 刘亚鹏;内蒙古高原湖泊好氧不产氧光合细菌的分离及功能分析[D];内蒙古农业大学;2013年
7 胡晓兰;藏北高原湖泊现代沉积硅藻分布特征及生态习性研究[D];兰州大学;2014年
,本文编号:2146643
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2146643.html