准晶反平面中心裂纹问题的研究
[Abstract]:Quasicrystal is a new solid structure and new material discovered in the last twenty years. Compared with the classical crystal elastic problem, the quasicrystal elasticity problem is much more complicated. It not only has the phonon field, but also characterizes the phase subfield of the quasi periodic arrangement of atoms, and the coupling of the phonon field phase subfield. The research on the quasi crystal and the defect problem has been given by the predecessors. Solving methods, such as complex function method, Green function method, Fourier transformation method, perturbation method and finite difference method and so on. Compared with quasicrystal dynamics problems, the study of statics is a simple multi.Westergaard stress function method and Muskhelishvili method as two kinds of complex function methods for solving linear elastic fracture mechanics problems. The second chapter is divided into two parts. The first part is divided into two parts. The first part is the plane problem of the Dugdale model. Based on the viewpoint of the Dugdale, the semi infinite crack in the finite and long body in the plane elasticity is studied by the complex function method. From the physical plane to the unit circle of the mapping plane. By solving the function equation on the mapping plane, the stress intensity factor of the solid under the external load is obtained. At the same time, the cohesive zone size is obtained by the superposition principle. When the height of the long body tends to infinity, the results and the isotropic body knot in the classical elasticity are obtained. The second part is the Dugdale model in one dimension six square quasicrystals. By using the Muskhelishvili complex function method, the analytical solution of the size of the plastic zone of the crack tip and the tear displacement at the crack tip is obtained by combining the conformal transformation method. The results are in agreement with the results given by Fan by the dislocation model. This is a quasicrystal material. In the third chapter, the dynamic response of a three-dimensional quasicrystal with a central crack is studied by the finite difference method with the help of the quasicrystal fluid dynamics model. The theoretical and numerical analysis of the crack in the phonon field, the phase subfield and the phonon phase position coupling effect is given. Then the numerical solution of stress, displacement and normalized dynamic stress intensity factor is obtained. By comparing with the crystal results, the influence of the basic field of the phonon and phase bullets is highlighted, thus revealing their important position in the dynamic deformation of the quasicrystal.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O346.1
【相似文献】
相关期刊论文 前8条
1 张孝思 ,李维伯 ,阎步强;含有Ⅲ型中心裂纹的矩形薄板在突然位移作用下的瞬时效应[J];北京航空学院学报;1985年01期
2 邹广平,张正国,张学义;中心裂纹板张开位移研究[J];哈尔滨工程大学学报;1999年01期
3 吴刚,童谷生;中心裂纹板的动、静态破损实验研究[J];华东交通大学学报;1995年02期
4 刘瑜,李群;含中心裂纹压电体的二维精确解[J];应用力学学报;2004年02期
5 孙宏才;高磊;徐关尧;胥银华;;矩形板中心裂纹有限元数值分析[J];解放军理工大学学报(自然科学版);2006年03期
6 刘鹏飞,陶伟明,郭乙木;中心裂纹板塑性功因子的计算[J];浙江大学学报(工学版);2004年08期
7 王启智;有限宽板中心裂纹断裂过程区的长度和位移公式[J];应用力学学报;2001年04期
8 吴刚,,陈泽光;贯穿的中心裂纹LY12板在动静态加载条件下的断裂实验研究[J];实验力学;1994年02期
相关会议论文 前10条
1 刘欢;;梅山炼钢厂板坯中心裂纹成因分析[A];中国金属学会第一届青年学术年会论文集[C];2002年
2 佟新;宋满堂;;板坯中心裂纹和三角区裂纹的成因与防止[A];品种钢连铸坯质量控制技术研讨会论文集[C];2008年
3 佟新;;板坯中心裂纹和三角区裂纹的成因与防止[A];第四届中国金属学会青年学术年会论文集[C];2008年
4 贺玉军;陈俊良;韩建刚;;矩形坯中心裂纹的分析及防止措施[A];2012年微合金钢连铸裂纹控制技术研讨会论文集[C];2012年
5 陈俊良;贺玉军;韩建刚;;矩形坯中心裂纹的分析及防止措施[A];2012年全国炼钢—连铸生产技术会论文集(下)[C];2012年
6 底根顺;翟永臻;吴东升;江福先;郭明建;李家征;;连铸小方坯中心裂纹的研究与分析[A];2005中国钢铁年会论文集(第3卷)[C];2005年
7 底根顺;吴东升;翟永臻;闫卫兵;李家征;张明海;;连铸小方坯中心裂纹的研究[A];第八届全国冶金工艺理论学术会议论文专辑[C];2005年
8 张富强;李超;姜振生;孟劲松;吴世龙;王霆;王新华;张炯明;朱国森;栗伟;;连铸板坯中心裂纹和三角区裂纹的成因及防止[A];中国金属学会2003中国钢铁年会论文集(3)[C];2003年
9 牛士珍;宋波;樊一丁;闫利波;张杰;;热轧棒材低倍中心裂纹缺陷研究[A];2006年全国冶金物理化学学术会议论文集[C];2006年
10 王艳华;田凤纪;董志强;;板坯质量攻关实践[A];2006中国金属学会青年学术年会论文集[C];2006年
相关硕士学位论文 前2条
1 侯成;混凝土中心裂纹巴西圆盘试件的断裂行为研究[D];太原理工大学;2017年
2 乔亮萍;准晶反平面中心裂纹问题的研究[D];太原理工大学;2017年
本文编号:2164998
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2164998.html