混凝土中心裂纹巴西圆盘试件的断裂行为研究
[Abstract]:Concrete is a kind of multiphase composite material, which plays an irreplaceable role in national life because of its wide application and large dosage. Although concrete materials are widely used, we still do not know enough about them, such as the assessment of the use of cracked concrete foundations, high-rise buildings, bridges, dams, military protective devices, etc., which may be subject to strong temperature difference between day and night, strong pressure, etc. Evaluation of concrete structures subjected to strong winds, impacts, explosions, earthquakes, etc. Therefore, it is very important to study the fracture failure of concrete for the construction and maintenance of engineering. Stress intensity factor (SIF) and T stress are important parameters in fracture mechanics. This paper introduces in detail how to solve the SIF and T stresses of cracked members by using the weight function method, the superdeterministic finite element method and the interaction integration method. The interaction integration method based on extended finite element method (XFEM) is described in detail. The method is more general and accurate, and can be used to solve homogeneous materials. The SIF and T stresses at the crack tip of functionally graded materials and heterogeneous materials with inclusion interfaces under complex working conditions. In addition, In this paper, the maximum tangential stress criterion (MMTS criterion) modified by Ayatollahi et al is introduced in detail, in which the MMTS criterion considers both the singular stress term in the stress field at the crack tip (that is, SIF), and the nonsingular stress term, that is, T in Williams series). Maximum tangential stress criterion for terms A _ 3 and B _ 3). Four different types of specimens (mortar specimen, small particle aggregate concrete specimen, large granular aggregate low strength concrete specimen, large particle aggregate high strength concrete specimen) and different types of crack (pure type I) were studied by using MTS GMTS and MMTS criteria. The crack initiation angle and fracture resistance of Brazilian disc (CCBD) specimen with center crack of pure mode II and I-II composite mode are investigated experimentally and theoretically. The fracture behavior of concrete CCBD specimens predicted by MTS- GMTS and MMTS criterion was compared and analyzed. The results show that compared with the conventional MTS- GMTS criterion, the MMTS criterion can better predict the crack initiation angle and fracture toughness of concrete CCBD specimens, especially in the case of mode II load dominating. The influence of confining pressure on SIF and T stress at crack tip of CCBD specimen was studied by weight function method and interaction integration method. The results show that the precision of the weight function method and the interaction integration method are very high, and the error between them is very small. Confining pressure has important influence on T stress and mode I SIF, but it has no effect on mode II SIF. Large confining pressure will make the crack close. When the ratio of length to diameter and the loading angle are certain, the mode I SIF decreases and the T stress increases with the increase of confining pressure. The critical loading angle of the pure mode II crack depends on the confining pressure. The larger the confining pressure is, the smaller the critical loading angle is. With the confining pressure coefficient increasing to 1, the critical loading angle decreases to 0.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O346.1
【相似文献】
相关期刊论文 前8条
1 张孝思 ,李维伯 ,阎步强;含有Ⅲ型中心裂纹的矩形薄板在突然位移作用下的瞬时效应[J];北京航空学院学报;1985年01期
2 邹广平,张正国,张学义;中心裂纹板张开位移研究[J];哈尔滨工程大学学报;1999年01期
3 吴刚,童谷生;中心裂纹板的动、静态破损实验研究[J];华东交通大学学报;1995年02期
4 刘瑜,李群;含中心裂纹压电体的二维精确解[J];应用力学学报;2004年02期
5 孙宏才;高磊;徐关尧;胥银华;;矩形板中心裂纹有限元数值分析[J];解放军理工大学学报(自然科学版);2006年03期
6 刘鹏飞,陶伟明,郭乙木;中心裂纹板塑性功因子的计算[J];浙江大学学报(工学版);2004年08期
7 王启智;有限宽板中心裂纹断裂过程区的长度和位移公式[J];应用力学学报;2001年04期
8 吴刚,陈泽光;贯穿的中心裂纹LY12板在动静态加载条件下的断裂实验研究[J];实验力学;1994年02期
相关会议论文 前10条
1 刘欢;;梅山炼钢厂板坯中心裂纹成因分析[A];中国金属学会第一届青年学术年会论文集[C];2002年
2 佟新;宋满堂;;板坯中心裂纹和三角区裂纹的成因与防止[A];品种钢连铸坯质量控制技术研讨会论文集[C];2008年
3 佟新;;板坯中心裂纹和三角区裂纹的成因与防止[A];第四届中国金属学会青年学术年会论文集[C];2008年
4 贺玉军;陈俊良;韩建刚;;矩形坯中心裂纹的分析及防止措施[A];2012年微合金钢连铸裂纹控制技术研讨会论文集[C];2012年
5 陈俊良;贺玉军;韩建刚;;矩形坯中心裂纹的分析及防止措施[A];2012年全国炼钢—连铸生产技术会论文集(下)[C];2012年
6 底根顺;翟永臻;吴东升;江福先;郭明建;李家征;;连铸小方坯中心裂纹的研究与分析[A];2005中国钢铁年会论文集(第3卷)[C];2005年
7 底根顺;吴东升;翟永臻;闫卫兵;李家征;张明海;;连铸小方坯中心裂纹的研究[A];第八届全国冶金工艺理论学术会议论文专辑[C];2005年
8 张富强;李超;姜振生;孟劲松;吴世龙;王霆;王新华;张炯明;朱国森;栗伟;;连铸板坯中心裂纹和三角区裂纹的成因及防止[A];中国金属学会2003中国钢铁年会论文集(3)[C];2003年
9 牛士珍;宋波;樊一丁;闫利波;张杰;;热轧棒材低倍中心裂纹缺陷研究[A];2006年全国冶金物理化学学术会议论文集[C];2006年
10 王艳华;田凤纪;董志强;;板坯质量攻关实践[A];2006中国金属学会青年学术年会论文集[C];2006年
相关硕士学位论文 前2条
1 侯成;混凝土中心裂纹巴西圆盘试件的断裂行为研究[D];太原理工大学;2017年
2 乔亮萍;准晶反平面中心裂纹问题的研究[D];太原理工大学;2017年
,本文编号:2182227
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2182227.html