基于分块的海量地理国情图斑融合及缝补技术研究

发布时间:2018-08-18 12:58
【摘要】:第一次地理国情普查是当今一项重大的国情国力调查,是掌握自然地理要素以及人文地理要素空间分布情况的重要方式。图斑反映了地理国情中的地表自然物和人工建造物的自然属性或状况,是此次地理国情普查成果图的重要制图内容。在海量地理国情数据中,不同部门需要信息的详尽程度和尺度范围各不相同,因此需要通过自动制图综合的手段得到不同比例尺的数据,以供不同部门在不同领域中的应用。本文在分析地理国情图斑全覆盖、无缝隙、无重叠并且语义信息丰富等特点的基础上,考虑到图斑数据量较大,分类琐碎形状复杂,缩编时涉及的尺度变化较大,且融合过程的技术要求繁琐,因此在图斑自动化流程设计以及融合算法上进行优化。本文主要研究内容:1、从自动化综合出发,全面梳理图斑综合涉及的知识规则和技术要求;2、针对图斑融合算法,提出邻近关系分析模型和骨架线优化算法,并优化融合流程,提高融合的效率和结果的准确性;3、针对图斑数量大的特点,提出将数据进行物理分块,制定分块的规则以及数据集提取流程,通过分块后的数据并行进行融合操作,大幅度提高融合效率;4、对分块完成融合后的结果数据,分模式提出边界处缝补技术,从而保证综合后数据空间一致性和拓扑完整性。
[Abstract]:The first general survey of geographical conditions is an important survey of national conditions and national strength. It is an important way to grasp the spatial distribution of natural geographical elements and humanistic geographical elements. The map spot reflects the natural attribute or condition of the surface natural object and the artificial construction object in the geographical national conditions, and is the important mapping content of the result map of the geographical situation survey. In the mass geographic national conditions data, the detailed degree and the scale range of the information needed by different departments are different, so it is necessary to obtain the data of different scales by means of automatic cartographic generalization for the application of different departments in different fields. On the basis of analyzing the features of geographical situation, such as full coverage, no gap, no overlap and rich semantic information, this paper takes into account the large amount of map spot data, the complexity of classification and trivial shapes, and the large scale changes involved in the drawdown. And the technical requirements of the fusion process are cumbersome, so we optimize the automatic flow design and fusion algorithm. This article mainly studies the content: 1, from the automation synthesis, comprehensively combs the picture spot synthesis related knowledge rule and the technical requirement. Aiming at the image spot fusion algorithm, proposes the proximity relation analysis model and the skeleton line optimization algorithm, and optimizes the fusion flow. In order to improve the efficiency of fusion and the accuracy of the result, aiming at the large number of image spots, the paper puts forward that the data is divided into physical blocks, rules of partition and extraction flow of data set are formulated, and the fusion operation is carried out in parallel through the data divided into blocks. The efficiency of fusion is greatly improved. The patching technique at the boundary is put forward to ensure the consistency of data space and the topological integrity of the integrated data.
【学位授予单位】:中国测绘科学研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P208

【参考文献】

相关期刊论文 前10条

1 廖敏;文婷玉;;第一次地理国情普查成果应用的思考与建议[J];测绘地理信息;2016年05期

2 李太平;吴长俊;孙朝r,

本文编号:2189534


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2189534.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1b300***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com