基于高分遥感影像的农村居民点提取研究
[Abstract]:Today is the era of rapid development of 3S technology. The launching of high-resolution satellites and the production of high-resolution data have promoted the progress of remote sensing technology, one of the 3S technologies. The method of visual interpretation of thematic information and the method of automatic and semi-automatic extraction with low precision can no longer meet the needs of application. Therefore, the key to solve this problem is the method of high precision, flowing and intelligent extraction. There are few rural settlements in Hilly area, so it is very important to strengthen the research on the extraction of rural settlements in Hilly area. Based on the remote sensing images of Gaofen-2 and Gaofen-1, this paper studies the extraction of rural settlements in Hilly area. Taking Qiulin Town of Santai County, Mianyang City, Sichuan Province, as an example, it extracts rural settlements in three steps. The first step is to extract rural residential housing, the second step is to extract rural residential ancillary land (forest pan around the house, sun dam and other land), and the third step is to merge rural residential housing and ancillary land. Identity, then mining and analyzing pixel spectral information, spatial shape feature, texture information, spatial relationship feature, terrain feature, etc. Through supervised classification, unsupervised classification, decision tree classification based on expert knowledge, rule-based and sample-based object-oriented information segmentation and extraction methods for experimental research, rule-based orientation is proposed. Object feature extraction method is the best method to extract rural residential housing, and extract rural residential housing, and then in Arc GIS using the adjacent location and shape characteristics of rural residential housing and ancillary land, extract rural residential land, and then merge the two into rural residential areas, so as to achieve the goal. The main research results are as follows: (1) Establish the extraction model of high-grade 2 rural residential housing based on rule-oriented object feature extraction method, and use the method to evaluate the extraction accuracy. (2) Combining the rule-based object-oriented feature extraction method and the spatial analysis method of GIS (Geographic Information System), the location and shape of rural residential areas are extracted more accurately. Compared with the vector data of land survey in the same year, the location precision, shape precision and comprehensive precision of rural residential areas are more than 85%. (3) Establish a precision evaluation system, including position precision, shape precision and comprehensive precision, and establish a precision evaluation model in Arc GIS. (4) Apply the data extracted by this research method to the analysis of the current situation of rural residential areas, and find the problems of scattered village distribution and small scale of rural residential land. The following: (1) Using high-resolution satellite remote sensing image to extract rural residential areas in Hilly areas, and combining rule-based object-oriented feature extraction method and GIS spatial analysis method to achieve intelligent extraction of rural residential areas. (2) In mining feature information, in addition to spectral features, texture features, spatial shape features analysis, but also. With the popularity of high-resolution remote sensing data, research on high-resolution remote sensing images and rural settlements, scientific basis is provided for land monitoring, geographic survey, urban planning, housing construction, modern agriculture, disaster assessment and environmental change prediction. Urban and rural sustainable development provides decision support.
【学位授予单位】:四川师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P237
【参考文献】
相关期刊论文 前10条
1 周绍光;孙金彦;凡莉;向晶;陈超;;高分辨率遥感影像的建筑物轮廓信息提取方法[J];国土资源遥感;2015年03期
2 张慧颖;薛福亮;;一种利用Vague集理论改进的协同过滤推荐算法[J];现代图书情报技术;2012年03期
3 刘衷瑞;冯伍法;宁卫远;胥亚;卢茂芬;;基于高分辨率卫星影像的居民地信息提取研究[J];影像技术;2012年01期
4 王国强;马军成;;城镇住宅用地集约利用评价研究——以郑州市为例[J];国土资源科技管理;2011年03期
5 谭国强;王周龙;王霞;马金卫;;基于知识的遥感影像居民地信息提取——以山东省蓬莱市为例[J];山东国土资源;2011年04期
6 陈广群;刘洋;兰泽英;;基于高分辨率遥感影像的农村居民点内部用地信息提取研究[J];城市勘测;2010年03期
7 乔程;骆剑承;吴泉源;沈占锋;王宏;;面向对象的高分辨率影像城市建筑物提取[J];地理与地理信息科学;2008年05期
8 谭永生;沈掌泉;贾春燕;王珂;;QuickBird全色与多光谱影像融合方法比较研究[J];科技通报;2008年04期
9 何海清;李发斌;李何超;王勇;;基于权重与混合模型的遥感图像分类方法研究[J];国土资源遥感;2008年02期
10 汤泉;牛铮;;基于IDL与ENVI二次开发的遥感系统开发方法[J];计算机应用;2008年S1期
相关博士学位论文 前1条
1 陈一祥;高分影像空间结构特征建模与信息提取[D];武汉大学;2013年
相关硕士学位论文 前10条
1 胡茂莹;基于高分二号遥感影像面向对象的城市房屋信息提取方法研究[D];吉林大学;2016年
2 黄维江;基于遥感和三维技术的震后滑坡地质灾害信息提取[D];成都理工大学;2016年
3 刘欣;利用CART算法从LandSat8卫星影像提取居民地的研究[D];兰州大学;2015年
4 李靖涵;居民地增量更新中空间冲突检测与处理方法研究[D];解放军信息工程大学;2015年
5 宁佐荣;基于MODIS数据的低山丘陵区水稻估产模型研究[D];西南大学;2014年
6 王蓉;图像增强算法实现[D];长江大学;2014年
7 吴瑶;基于空间信息技术的聚落体系研究[D];四川师范大学;2013年
8 包蕾;基于RS与GIS的城中村与山地居民点现状研究[D];内蒙古农业大学;2012年
9 张雷;基于3S技术的滇池流域土地利用变化研究[D];昆明理工大学;2012年
10 郭春梅;基于RS和GIS的射洪县土地利用变化与评价研究[D];四川师范大学;2012年
,本文编号:2210821
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2210821.html