集合卡尔曼滤波(EnKF)岸基雷达资料同化对登陆台风数值模拟的影响研究
[Abstract]:In recent decades, the forecast error of typhoon track is decreasing year by year, but the progress of intensity and precipitation is very slow, which is partly due to the relatively insufficient ability of typhoon numerical model to predict its intensity and structure. Due to the strong nonlinearity of the typhoon system, the small deviation of the initial field is easy to double magnify in the integral process, which makes the forecast result deviate from the actual weather condition seriously. In the process of data assimilation, the model background field and observation data are fused based on certain mathematical theory, and the analytical field with small theoretical error is obtained, which can provide more accurate prediction initial conditions for the numerical model. To a certain extent, the ability of model prediction is improved. Shore based radar can detect the fine structure of landing typhoon core. It is very important to make use of radar data to improve the numerical forecast of landing typhoon in China. Ensemble Kalman filter uses a set of members to construct background error covariance with "current dependence" characteristics, which is still rare in the study of typhoon data assimilation in China. It is significant to study the numerical prediction of landfall typhoon by using the ensemble Kalman filter to assimilate the land-based radar data in China. Three landfall typhoons Rainbow (1522), Moranti (1010) and Wieson (1409) have been numerically tested in this paper by using the PSU WRF-EnKF assimilation system developed by Penn State University and the radial wind data of land-based radar in China in recent years. It is found that the radar data set contract technique can significantly improve typhoon track, intensity, structure and precipitation simulation. Through the assimilation of the cyclic data, the typhoon position of the field is gradually approaching to the measured position, and the simulation error of the landing point of the typhoon is less than 10km. In the mean of three typhoons, after 8 h cyclic assimilation of radar data, the track error of the typhoon began to show positive effect compared with that before assimilation, and the 60km of the data never assimilated in the assimilation window was reduced to about the 20km after assimilation. The path error can be less than 10km after multi-time cycle assimilation. The typhoon intensity can be improved obviously from the initial stage of cycle assimilation, the mean typhoon intensity error can be reduced to below 10hPa, and the radar data assimilation can significantly strengthen the typhoon. In the analysis of typhoon "rainbow" assimilation, it is also found that with the increase of assimilation data, the structure of the upper layer warm center is obviously strengthened, the maximum wind velocity radius shrinks, the wind hole shrinks, and the convection asymmetric structure is close to the measured data. The assimilation increment shows that the correction of the model background field is gradually concentrated in the typhoon core with the increase of the number of cycles. The data assimilation improves the forecast of typhoon precipitation to some extent, and the more times of assimilation, the more the TS score of precipitation forecast is improved. The radar data are further assimilated into three parts according to the distance from the center of the typhoon, which are less than 100kmm2 100-200km and larger than 200km, respectively. According to the results of Rainbow test, only the data in the radius range of Typhoon 100km are assimilated in the track and intensity of the typhoon. The assimilation effect can be basically the same as that of all the data assimilated in structure, but the assimilation effect is not significant except in the range of 100-200km and 200km. The data and assimilation data in the 100km range of the assimilation core are very close to each other in the three typhoon experiments, and the error of track and intensity after multi-time cyclic assimilation is lower than that of 5km and 5HPA, respectively. It shows that the kernel data is the key to improve the background field, which usually accounts for less than 50% of the total data (varying according to the typhoon case), but restricts the assimilation effect. Only assimilation of this part of data can achieve the same effect as assimilation of all data, but it can reduce by more than half the calculation amount of the original huge set assimilation, and shorten the computer time.
【学位授予单位】:中国气象科学研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P456.7
【相似文献】
相关期刊论文 前10条
1 黄幸媛;我国登陆台风灾害的监测及预报技术研究成果交流会顺利召开[J];应用气象学报;2003年02期
2 ;我国登陆台风灾害的监测及预报技术研究[J];Annual Report of CAMS;2003年00期
3 汪铎,陆叔鸣,陈继芳,张镡;近百年东亚登陆台风的长期振动[J];热带气象;1986年04期
4 励申申,寿绍文;登陆台风维持和暴雨增幅实例的能量学分析[J];南京气象学院学报;1995年03期
5 ;我国登陆台风灾害的监测及预报技术研究——项目的意义和进展[J];Annual Report of CAMS;2002年00期
6 姚才,张诚忠,黄明策;华南登陆台风“榴莲”的能量分析[J];气象;2004年06期
7 杨玉华,雷小途;我国登陆台风引起的大风分布特征的初步分析[J];热带气象学报;2004年06期
8 于淑秋;王继志;;“我国登陆台风灾害的监测及预报技术研究”通过验收[J];Annual Report of CAMS;2004年00期
9 澎涛涌;“世界气象组织国际登陆台风研讨会”在中国澳门举行[J];气象学报;2005年02期
10 李英;;登陆台风及其暴雨的研究进展[J];Annual Report of CAMS;2005年00期
相关会议论文 前10条
1 王新敏;赵培娟;李保生;苏爱芳;;影响河南的登陆台风路径分析[A];2007年海峡两岸气象科学技术研讨会论文集[C];2007年
2 刘凤淮;陈慧;王苏;;汛期(6~9月)登陆台风偏多预测探讨[A];第26届中国气象学会年会热带气旋科学研讨会分会场论文集[C];2009年
3 陈胜晶;;福建省登陆台风与暴雨洪水关系分析[A];福建省第十三届水利水电青年学术交流会论文集[C];2009年
4 朱志存;尹宜舟;;中国大陆登陆台风所引起的暴雨频数分布初步分析[A];第七届长三角气象科技论坛论文集[C];2010年
5 钱燕珍;孙军波;陈佩燕;张程民;;近海及登陆台风强度预报的支持向量机方法[A];第28届中国气象学会年会——S12热带气旋[C];2011年
6 张行才;朱持则;;浙江登陆台风的风险水平研究[A];中国灾害防御协会风险分析专业委员会第二届年会论文集(二)[C];2006年
7 岳彩军;;登陆台风暴雨的定量分析:“海棠”台风(2005)个例研究[A];第七次全国动力气象学术会议论文摘要[C];2009年
8 韩桂荣;唐晓文;魏建苏;;两个登陆台风不同的发展过程的对比分析[A];第二届长三角气象科技论坛论文集[C];2005年
9 徐明;余锦华;高琦;;环境风垂直切变与登陆台风强度变化关系的统计分析[A];第27届中国气象学会年会灾害天气研究与预报分会场论文集[C];2010年
10 韩桂荣;唐晓文;;登陆台风变性发展与消亡的对比分析[A];2006年海峡两岸气象科学技术研讨会论文集[C];2006年
相关重要报纸文章 前6条
1 南方日报记者 邓圣耀 通讯员 粤水轩;粤年均登陆台风居全国之首[N];南方日报;2014年
2 记者 郭起豪;今年登陆台风多但损失小[N];中国气象报;2008年
3 陈磊;台风监测预报技术研究通过验收[N];中国气象报;2004年
4 李晔;贾天清;陈拥君;服务更加精细化[N];中国气象报;2002年
5 王章敏;5月入汛以来全省气候特点[N];湖北科技报;2006年
6 记者 雷弟明;重庆旱情尚难缓解[N];中华工商时报;2006年
相关博士学位论文 前1条
1 李昕;适用于登陆台风数值预报的雷达资料同化理论和应用研究[D];南京大学;2014年
相关硕士学位论文 前10条
1 马秀梅;我国登陆台风边界层风场结构和演变特征的多普勒雷达分析[D];南京大学;2014年
2 林青;华南登陆台风内核区降水非对称结构分析[D];南京大学;2014年
3 冯佳宁;集合卡尔曼滤波(EnKF)岸基雷达资料同化对登陆台风数值模拟的影响研究[D];中国气象科学研究院;2017年
4 姚丽娜;华东地区登陆台风降水及路径的初步研究[D];南京信息工程大学;2008年
5 施程;清代浙江省登陆台风及其社会响应[D];浙江师范大学;2014年
6 林卫华;登陆台风暴雨的数值模拟与诊断分析[D];南京信息工程大学;2007年
7 徐明;环境风垂直切变对登陆台风活动的影响[D];南京信息工程大学;2008年
8 花丛;登陆台风“罗莎”中云物理特征的数值模拟研究[D];中国气象科学研究院;2010年
9 陈玉林;登陆台风暴雨成因浅析及其数值模拟[D];南京信息工程大学;2005年
10 周芯玉;风廓线仪多点观测网揭示的登陆台风“天鹅”、“巨爵”低层风场结构特征[D];中国气象科学研究院;2011年
,本文编号:2212396
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2212396.html