青藏高原东南缘演化过程的动力学模拟
[Abstract]:The large-scale uplift of the Qinghai-Xizang Plateau originated from the subduction of the Indian plate from 50 Myrs to the oceanic continent of the Eurasian plate into a continental collision, and then sustained compression of the Eurasian plate. During this process, the southern Qinghai-Xizang Plateau experienced significant crustal shortening and thickening, resulting in a very high topography. However, the uplift mechanism in other regions of the Tibetan Plateau, especially the plateau margin, is still controversial. Under the compression of the Indian plate, the upper crust of the central Qinghai-Xizang Plateau is in an obvious stretching state in the east-west direction, with the material moving eastward and extruding from the eastern margin. The southeastern margin of Qinghai-Xizang Plateau, as the main outflow channel of material, has three typical characteristics. Firstly, the matter of Qinghai-Xizang Plateau is blocked by Sichuan Basin on the eastern margin, and a very steep terrain is formed on the margin of Qinghai-Sichuan Basin, which falls from 4500m to 500m within 100 km. Secondly, the material flow in the Qinghai-Xizang Plateau is divided into two branches in Sichuan Basin, one flowing to North China and the other to South China, and the matter flowing to South China rotates clockwise around the eastern Himalayan tectonic junction. Third, the southeast margin of Qinghai-Xizang Plateau has strong tectonic activity, wide distribution of faults and multiple earthquakes. In order to understand the geological evolution of the southeastern margin of the Qinghai-Xizang Plateau, an analytical model and a numerical model were established to simulate the uplift process of the Longmen Mountains in view of the margin of the Qinghai-Xizang Plateau and Sichuan Basin. The distribution of lithospheric viscosity coefficient and the variation of stress and strain rate are determined. At the same time, we are establishing a three-dimensional numerical model of Sichuan-Yunnan region, trying to study the influence of shallow surface structure on the movement of Qinghai-Xizang Plateau and its southeast margin, and to establish the crustal and mantle coupling model in this region. The theory of channel flow in the lower crust can explain the uplift of the eastern edge of the Qinghai-Xizang Plateau well, but the previous analytical models are obviously inconsistent with the facts, so we have established a new model. The channel thickness increases with the inflow of matter. The results of our analytical model show that the larger the viscosity coefficient of the lower crust is, the greater the gradient of topography is at the boundary. The viscosity coefficient of the lower crust in Sichuan Basin is 1022 Pasas through the restriction of the actual terrain, which is 10 times of the previous results. On the basis of the analytical model, we consider more factors that may affect the evolution process, and establish a numerical model. Based on the results of the analytical model on the viscosity coefficient of the lower crust, it is further determined that the viscosity coefficient of the upper crust and the lithospheric mantle of the Sichuan basin is 1024 Pasas and 1023 Pasas respectively. In the uplift process, the stress and strain rates are very large in the front edge of uplift and smaller in other regions because of the large viscosity coefficient of the lower crust of Sichuan basin and the obstruction of material flow. During the uplift, the stress state in the upper crust of the Longmen Mountain region may undergo a transition from tensile to compression, which may be related to many types of faults near Longmen Mountain. In addition, the anisotropic characteristics of Qinghai-Xizang Plateau and Sichuan-Yunnan region are different. The transformation of fast wave polarization direction may be due to the different deformation coupling modes of crust and mantle in Qinghai-Xizang Plateau and Sichuan-Yunnan region.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P542
【相似文献】
相关期刊论文 前10条
1 袁兴红,王玉连;测定变温液体粘滞系数的实验方法[J];安徽农业技术师范学院学报;2001年02期
2 朱莪青;;气体粘滞系数测定的简法[J];物理实验;1982年02期
3 秦继民;不用“分队”假设推导气体粘滞系数的简便方法[J];广西师范大学学报(自然科学版);1985年01期
4 陈贤隆;;用泊肖叶公式测液体粘滞系数条件的说明[J];物理实验;1986年01期
5 陈丽群;高粘度液体粘滞系数测定仪[J];大学物理实验;1996年01期
6 许定生;液体粘滞系数的准确测量和计算[J];物理实验;1999年01期
7 曹钢,于少华;测量粘滞系数计时起点的确定[J];山东轻工业学院学报(自然科学版);1999年03期
8 苏莉,李子军;推导粘滞系数的一种方法[J];内蒙古民族师院学报(自然科学版);2000年02期
9 赵淑云,温淑珍,汪兆军;转动法测粘滞系数暂态过程分析[J];高师理科学刊;2001年03期
10 鲁凯翔,邹俊生;测液体粘滞系数的一种方法[J];南昌航空工业学院学报;2001年03期
相关会议论文 前5条
1 梁丽芳;邢达;陈同生;裴沂辉;;用荧光相关谱技术测量细胞核浆的粘滞系数[A];中国光学学会2006年学术大会论文摘要集[C];2006年
2 冯仁发;张锡珍;吴锡真;卓益忠;;考虑对相互作用的粘滞系数的微观计算[A];第五次核物理会议资料汇编(下册)[C];1982年
3 钱钧;康明;王槿;张春玲;;毛细管法测量液体粘滞系数[A];第六届全国高等学校物理实验教学研讨会论文集(下册)[C];2010年
4 张玉清;张蕴华;张景霞;;雷诺方程组的封闭与应用及普朗特紊动切应力和紊动粘滞系数理论计算[A];第十六届全国水动力学研讨会文集[C];2002年
5 陈刚;朱震刚;;内耗、粘滞系数与金属材料的微观结构[A];内耗与超声衰减——第五届全国固体内耗与超声衰减学术会议论文集[C];1997年
相关硕士学位论文 前7条
1 张健;三维粘弹性桩基动力测试理论与实践研究[D];合肥工业大学;2016年
2 彭典典;青藏高原东南缘演化过程的动力学模拟[D];中国科学技术大学;2017年
3 张乐;有效动力论研究高温QCD物质的粘滞系数[D];华中师范大学;2011年
4 高博;基于新型磁致伸缩传感器的管道缺陷和液体粘滞系数检测研究[D];北京工业大学;2014年
5 郭盼盼;PNJL模型中热密夸克物质的体粘滞系数[D];华中师范大学;2011年
6 吴小云;浓悬浮液粘滞系数与颗粒粒径分布的测量[D];中南大学;2013年
7 刘健;化学非平衡QGP系统的切向粘滞系数和流体力学演化[D];华中师范大学;2011年
,本文编号:2257447
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2257447.html