半参数模型的若干问题探讨
[Abstract]:The semi-parametric model adds nonparametric components into the observation equation on the one hand makes the established mathematical model closer to the real situation on the other hand it can numerically calculate the estimates of the system error and the accidental error respectively. This paper discusses some problems of semi-parametric model, discusses the combination of several traditional models and semi-parametric models, and analyzes the differences between the compensatory least square criterion and least square criterion. This paper discusses the advantages of combining several data processing methods with semi-parametric model and verifies by an example that the precision of parameter estimation obtained by combining traditional model with semi-parametric model is obviously improved. The main contents of this paper are as follows: 1. Based on the semi-parametric model and the compensated least square estimation method, the selection method of normal matrix R and smoothing factor 伪 is analyzed. The stability of the system error between the traditional parameter model and the semi-parametric model is compared and analyzed. In view of the complexity of the traditional smoothing factor selection method and the large amount of calculation, In this paper, a new and more convenient method for selecting smoothing factors is proposed, which is based on the optimal efficiency criterion. 2. The grey prediction modeling method based on semi-parametric model is studied. By improving the traditional normal matrix selection method, the influence of different normal matrices on parameter estimation and its accuracy change are analyzed, and the deformation monitoring data are combined. This paper discusses the variation of grey prediction accuracy under the least square criterion and the least square criterion. 3. For the semi-parametric model and its ridge estimation, this paper discusses the solution of the model when the normal matrix is ill-conditioned, discusses the selection method of the ridge parameter, and analyzes the relationship between the semi-parametric model ridge estimation and the universal compensated least square estimation. The effects of semi-parametric model and ill-conditioned model of semi-parametric ridge estimation on parameter estimation are analyzed by an example. 4. Considering that the least square estimation is not robust, so the compensated least squares estimation is not robust, so the robust estimation of semi-parametric model is studied, and the method of selecting the weight factor of robust estimation is discussed. The calculation formula of semi-parameter robust estimation based on weight selection iteration method is derived. The accuracy of several model solutions and their effects on accuracy are analyzed by examples.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P207
【参考文献】
相关期刊论文 前10条
1 周敏;周世健;谯婷;池其才;;半参数模型自然样条函数法与时间序列法分析[J];江西科学;2017年01期
2 潘雄;吕玉婷;汪耀;罗静;徐景田;;基于半参数平差模型的粗差定位与定值研究[J];武汉大学学报(信息科学版);2016年11期
3 周敏;周世健;王奉伟;;正规矩阵选取半参数灰色模型改进的预测建模[J];测绘科学;2016年08期
4 王康;周世健;;初始条件改进全概括灰色预测模型研究[J];测绘科学;2014年12期
5 潘申运;;补偿最小二乘法改进灰色预测模型的应用分析[J];测绘科学;2014年11期
6 陶肖静;朱建军;田玉淼;;半参数模型中影响正则化参数的因素分析[J];武汉大学学报(信息科学版);2012年03期
7 高宁;崔希民;高彩云;王果;赵万东;;变形平差系统模型误差的半参数补偿方法[J];大地测量与地球动力学;2012年01期
8 王成勇;;半参数回归模型研究综述[J];数理统计与管理;2009年05期
9 周命端;郭际明;文鸿雁;汪伟;;基于优化初始值的GM(1,1)模型及其在大坝监测中的应用[J];水电自动化与大坝监测;2008年02期
10 丁士俊;张松林;张洪波;陶本藻;;半参数模型稳健估计及其应用[J];测绘科学技术学报;2007年01期
相关博士学位论文 前3条
1 丁士俊;测量数据的建模与半参数估计[D];武汉大学;2005年
2 潘雄;半参数模型的估计理论及其应用[D];武汉大学;2005年
3 胡宏昌;半参数模型的估计方法及其应用[D];武汉大学;2004年
相关硕士学位论文 前5条
1 陶肖静;半参数平差模型的平差准则研究[D];中南大学;2011年
2 乐科军;基于Helmert方差分量估计的半参数回归模型若干算法研究[D];中南大学;2009年
3 刘运航;半参数模型理论及其在大地测量中的应用[D];解放军信息工程大学;2008年
4 尹逊震;灰色模型的改进及其应用[D];南京信息工程大学;2007年
5 周晓卫;基于虚拟观测的若干测量数据处理方法研究[D];中南大学;2007年
,本文编号:2298653
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2298653.html