考虑参数不确定性的结构系统振动研究
[Abstract]:In this paper, the statistical characteristics of vibration of structural systems with uncertain factors are studied and analyzed, based on the properties of orthogonal polynomial function system and the method of dimensionality reduction of multivariable functions. It is used to solve the randomness problems encountered in practical engineering and science, and the probabilistic and statistical characteristics of the random responses are compared with the results obtained by direct Monte Carlo simulation. Firstly, the basic concepts and properties of Hermite and Legendre orthogonal polynomials are introduced, which are favorable tools for approximation of response functions. Based on the dimensionality decomposition algorithm of arbitrary continuous differentiable multivariate functions, the Fourier-Hermite polynomial is used to expand the random response of the structural system under the condition that all the uncertain factors of the system are based on the corresponding and independent Gauss distribution. By reducing the dimension of the generalized model and using the method of multiple Gauss-Hermite numerical integration, each expansion coefficient is determined to obtain the approximation form of explicit orthogonal polynomial function which requires random response. The probabilistic and statistical characteristics of the method are analyzed by embedding local Monte Carlo simulation method. Finally, the error of the first four origin moments of the direct Monte Carlo simulation method is obtained by error formula, which is compared in a more intuitive way. Secondly, natural frequency is a key parameter in system design, structural analysis and stability, sensitivity analysis, as a structural dynamic characteristic parameter in actual structural dynamic system, and it has stochastic characteristics when considering the uncertainty of the system. For a spring mass system with three degrees of freedom and neglecting damping, the numerical simulation of its natural frequencies is carried out. The results show that the statistical results of the natural frequencies of the "black box" structure method are better than the implicit function expression method. With the increase of variable number of uncertain parameters, the statistical characteristics of natural frequencies of each order will be more consistent with the results of direct Monte Carlo simulation, but the computational cost will also increase with polynomial. Therefore, it is necessary to select the appropriate number of random variables according to the error analysis in order to reduce the calculation workload while satisfying the accuracy of the solution. Finally, parameterized modeling of plate-shell structural elements which are widely used in practical engineering structures is carried out. Under the boundary conditions of free on both sides and supported by spring on the left and right, the vibration response of the origin is caused by a simple harmonic force at a single point. Based on the above analysis method, the steady-state vibration displacement response in z direction at the excitation point is analyzed, and the probability and statistical characteristics of the random displacement response of the system are obtained. The mesh of plate structure is refined step by mesh element refinement criterion, and the influence of random boundary conditions of variable elastic braces on the response of random displacement is analyzed. The simulation results show that the proposed method can obtain the analytical results consistent with the direct Monte Carlo simulation and obtain the statistical characteristics of the vibration response of the stochastic plate structures. The finite element method based on the discrete stiffness boundary is used to refine the meshes. The statistical characteristics of the vibration response of stochastic plate structures with continuous stiffness boundary tend to a certain distribution.
【学位授予单位】:东北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O327
【相似文献】
相关期刊论文 前10条
1 冷伍明,,赵善锐;土工参数不确定性的计算分析[J];岩土工程学报;1995年02期
2 李智,韩崇昭;一类含参数不确定性混沌系统的自适应控制[J];物理学报;2001年05期
3 程加斌,张炎华;参数不确定性系统鲁棒状态估计的新方法[J];上海交通大学学报;1997年04期
4 陈昌军;郑雄伟;张卫飞;;三种水文模型不确定性分析方法比较[J];水文;2012年02期
5 戎保;芮筱亭;王国平;尹志嘉;;参数不确定性细长火箭弹随机特征值问题研究[J];工程力学;2012年07期
6 樊仲光;梁家荣;肖剑;;参数不确定性广义周期时变系统的鲁棒H_∞控制[J];数学的实践与认识;2013年05期
7 陈元芳;随机模拟中模型与参数不确定性影响的分析[J];河海大学学报(自然科学版);2000年01期
8 李小勇,罗交晚;带马尔可夫跳跃参数的离散随机双线性系统的稳定性[J];长沙铁道学院学报;2003年04期
9 陈昌军;郑雄伟;;水文模型参数不确定性分析方法探讨[J];水利规划与设计;2012年03期
10 李慧;;基于保成本设计的参数不确定性表示的优化[J];计算机仿真;2008年06期
相关会议论文 前5条
1 袁旭;朱圣英;乔栋;崔平远;;小天体着陆参数不确定性的敏感性分析[A];中国宇航学会深空探测技术专业委员会第十届学术年会论文集[C];2013年
2 张保强;郭勤涛;;基于调整参数和最大熵方法的模型和参数不确定性量化[A];中国力学大会——2013论文摘要集[C];2013年
3 徐宗学;李占玲;;黑河源区径流模拟与模型不确定性分析[A];变化环境下的水资源响应与可持续利用——中国水利学会水资源专业委员会2009学术年会论文集[C];2009年
4 王倩颖;吴斌;欧进萍;;考虑参数不确定性的结构振动滑动模态控制[A];第八届全国振动理论及应用学术会议论文集摘要[C];2003年
5 马钊;王跃萍;;参数不确定导弹高度控制系统的非线性设计[A];全面建成小康社会与中国航空发展——2013首届中国航空科学技术大会论文集[C];2013年
相关博士学位论文 前3条
1 原明亭;多项式参数依赖系统鲁棒控制有关问题研究[D];山东大学;2013年
2 贺亮;基于参数依赖Lyapunov函数的多目标优化理论及应用[D];哈尔滨工业大学;2007年
3 黄玮;混沌系统的同步和非混沌系统的混沌化研究[D];东北大学;2005年
相关硕士学位论文 前10条
1 赵浩然;带有未知参数的一类复杂网络的同步分析[D];江苏大学;2016年
2 李亚轩;考虑参数不确定性的结构系统振动研究[D];东北电力大学;2017年
3 朱华;不确定参数下混沌系统的控制与同步[D];浙江工业大学;2004年
4 姜晓明;参数不确定性系统的鲁棒设计[D];哈尔滨工业大学;2010年
5 周宾;基于参数依赖Lyapunov函数的不确定动态系统的综合及其工程应用[D];大庆石油学院;2007年
6 李楠;PID控制参数现代设计技术的研究与应用[D];浙江工业大学;2009年
7 秦帆;核电楼层谱参数不确定性及敏感性分析[D];大连理工大学;2014年
8 李纳;多项式参数依赖系统鲁棒稳定性分析与鲁棒镇定研究[D];青岛大学;2008年
9 王攀;含参数不确定时滞非线性Hamilton系统H_∞控制设计[D];曲阜师范大学;2013年
10 潘昌忠;考虑参数不确定性和外界扰动的Acrobot鲁棒控制设计[D];中南大学;2009年
本文编号:2400219
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2400219.html