2010-2012年江淮黄淮地区暖季强对流过程统计分析

发布时间:2019-03-10 18:58
【摘要】:中国江淮和黄淮地区是强对流天气的多发区域,本文利用三年(2010-2012年,4-10月)常规观测资料、再分析资料以及探空资料,对江淮黄淮地区(30-37° N,110-122° E)发生的1009个强对流天气过程进行了统计分析,得到该地区强对流发生的时空特征,典型环境背景以及对流关键参数的统计特征。统计发现,江淮黄淮地区强对流天气过程从2010年至2012年是逐年减少的。月分布上,强对流主要发生在6-9月,8月最多,呈单峰型;空间分布上,从4月开始强对流从南向北逐渐增多,到8月在全区范围达到最多,而后8月至10月又从北向南逐渐减少;江淮黄淮地区有明显的三块强对流多发区域,按其在研究区域所占比率大小分别是东部平原地区、山东泰山周边地区、大别山和黄山一带。从日变化来看,强对流过程主要发生在15-21时(LST),持续时间为1小时的强对流过程和总的强对流过程分布形态一致,呈单峰型,持续时间大于等于3小时的强对流过程在15-21时为主峰,在06-09时出现次峰,呈双峰型。日变化在空间分布上,从早至晚强对流过程有自西北向东南发展的规律。在强度上持续型强对流降水强度普遍要大于短时强对流类型。根据500hPa形势场将个例分成了低槽型、副高型、冷涡型、台风型四大类,其中低槽型716例,副高型226例,冷涡型30例,台风型37例。通过合成分析得到不同环境背景下天气系统与强对流发生时的平均位置特征,以及平均环境要素特征。发现副高型和台风型可降水量最大,低槽型适中,冷涡型就明显不如前三类;不稳定条件上,副高型和台风型最不稳定,低槽型适中,冷涡型不稳定度最低。利用探空资料统计强对流发生前的环境参数,发现副高型的水汽更多的集中在边界层低层,而台风型水汽分布更多在深厚的对流层中,低槽型水汽条件适中,冷涡型相对较小;副高型潜在不稳定最大,属于强对流较易触发类型,低槽型适中,而冷涡型潜在不稳定度相对较小,并且对流抑制能量最大,台风型潜在不稳定度在发生前与发生时改变很大,发生前最小,而发生时为最大。动力条件上,发现各个类型都有有利于垂直运动发展的环境条件。对比不同维持时长强对流,发现无论在水汽条件、不稳定条件以及动力抬升条件上,持续型强对流都是最强的,这与不同维持时长强对流的强度特征一致,对流抑制能量持续型与短时强对流相差不大。最后通过与已有研究对比,发现江淮黄淮地区的强对流过程潜在不稳定度偏弱,但具有较湿的环境场。
[Abstract]:The Jianghuai and Huang-Huai regions in China are prone to severe convective weather. In this paper, using the three-year (2010-2012, April-October) routine observation data, reanalysis data and sounding data, to the Jianghuai Huang-Huai area (30 掳N, 37 掳N), 1009 severe convective weather processes occurred in 110 掳E are statistically analyzed, and the spatial and temporal characteristics of strong convection occurrence in this area, the typical environmental background and the statistical characteristics of the key convection parameters are obtained. It is found that the severe convective weather process decreases year by year from 2010 to 2012 in the Huanghuai area of the Yangtze River and Huaihe River. In the monthly distribution, the strong convection occurred mainly from June to September, and the most occurred in August, showing a single peak type. In spatial distribution, strong convection gradually increased from south to north in April, reached the maximum in August, and then decreased from north to south from August to October. There are three strong convective regions in the Huanghuai area of the Yangtze River and Huaihe River. According to their proportion in the study area, they are the eastern plain area, the area around Mount Tai in Shandong Province, the Dabie Mountains and the Huangshan Mountains. According to the diurnal variation, the strong convective process mainly occurs at 15-21:00 (LST), duration of 1 hour, and the distribution pattern of the total strong convection process is the same as that of the total strong convection process, showing a single peak pattern. The strong convection process with duration greater than or equal to 3 hours is the main peak from 15 to 21:00, and the secondary peak appears from 06 to 09:00, showing a bimodal pattern. The diurnal variation develops from northwest to southeast in spatial distribution from early to late strong convection. The intensity of continuous strong convective precipitation is generally larger than that of short-term strong convection. According to the 500hPa potential field, the cases are divided into four types: low trough type, sub high type, cold vortex type and wind type. Among them, there are 7 16 cases of low trough type, 226 cases of sub high type, 30 cases of cold vortex type and 37 cases of wind type. The average location characteristics and average environmental factors of weather system and strong convection under different environment background are obtained by synthetic analysis. It is found that the subtropical high type and the wind type have the largest precipitable amount, the low trough type is moderate, the cold vortex type is obviously inferior to the first three types, the sub-high type and the wind type are the most unstable, the low trough type is moderate, and the cold vortex type is the lowest. Using sounding data to calculate the environmental parameters before the occurrence of strong convection, it is found that the water vapor of sub-high type is more concentrated in the lower layer of boundary layer, while the distribution of wind-type water vapor is more in the deep troposphere, the low-trough type of water vapor is moderate, and the cold vortex type is relatively small. The potential instability of the subtropical high type is the largest, belonging to the strong convection type which is more easily triggered, the low trough type is moderate, while the cold vortex type is relatively small in potential instability, and the convection suppression energy is the largest, and the potential instability of the wind type changes greatly before and after the occurrence. It is the smallest before the occurrence, and the largest at the time of occurrence. In terms of dynamic conditions, it is found that all types have environmental conditions conducive to the development of vertical motion. Compared with different duration strong convection, it is found that the continuous strong convection is the strongest in water vapor condition, unstable condition and dynamic uplift condition, which is consistent with the intensity characteristic of strong convection in different maintenance length. There is no significant difference between the persistent type of convective suppression energy and the short-term strong convection. Finally, through the comparison with the previous studies, it is found that the potential instability of the strong convective process in the Yangtze-Huaihe-Huai region is weak, but it has a relatively wet environmental field.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P458.1

【相似文献】

相关期刊论文 前10条

1 黄丽荣;《国外强对流天气应用研究》出版[J];气象;2001年06期

2 ;《国外强对流天气应用研究》出版[J];湖北气象;2001年03期

3 ;《国外强对流天气应用研究》出版[J];山东气象;2001年02期

4 ;《国外强对流天气应用研究》出版[J];浙江气象科技;2001年02期

5 刘运策;方一川;;2005年广东省强对流天气活动概况[J];广东气象;2006年01期

6 张信华;余建华;范明福;周博扬;罗旭;;闽北不同季节强对流天气异同点分析[J];气象;2010年06期

7 刘京华;王彬;韩雷;王洪庆;;京津地区一次强对流天气的初生预警技术研究[J];北京大学学报(自然科学版);2012年01期

8 田秀芬,曹建树,翟青厚,孙福柱;强对流天气综合预报[J];山东气象;1990年02期

9 胡富泉;一种强对流天气短期预报方法的研究和试报[J];高原气象;1996年03期

10 彭春华,,施望芝,何志学,张昕,王丽,李昊;关于溃变理论在湖北省春季短期强对流天气预报中的应用[J];华中师范大学学报(自然科学版);1996年01期

相关会议论文 前10条

1 焦热光;陈敏;尤凤春;;快速更新循环在北京地区强对流天气预报中的应用[A];第26届中国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集[C];2009年

2 尤凤春;吴宏议;魏东;杨波;;2008年6月13日北京强对流天气分析及检验[A];第26届中国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集[C];2009年

3 章志芹;过宇飞;陈潇潇;周彬;;090614影响华东地区的一次ɑ尺度强对流天气[A];第26届中国气象学会年会灾害天气事件的预警、预报及防灾减灾分会场论文集[C];2009年

4 曹俊元;查贲;倪琛玲;;杭州地区春季强对流天气的物理诊断分析和预报[A];首届长三角气象科技论坛论文集[C];2004年

5 毛则剑;高天赤;周春雨;崔洁;;杭州强对流天气气候特征分析[A];首届长三角气象科技论坛论文集[C];2004年

6 蒋义芳;姜麟;钱明;吴海英;王卫芳;王啸华;;江苏省强对流天气的多普勒产品特征分析[A];第三届长三角气象科技论坛论文集[C];2006年

7 史诗杨;雷正翠;;常州市2009年初夏一次强对流天气的分析[A];第六届长三角气象科技论坛论文集[C];2009年

8 汪红燕;;6月两次强对流天气的对比分析[A];第六届长三角气象科技论坛论文集[C];2009年

9 彭洁;傅承浩;朱国光;邹锦明;贺伟建;;湖南省强对流天气特征统计分析[A];第七届全国优秀青年气象科技工作者学术研讨会论文集[C];2010年

10 章志芹;夏健;周彬;;2008年夏季连续两次局地强对流天气的对比分析[A];第27届中国气象学会年会灾害天气研究与预报分会场论文集[C];2010年

相关重要报纸文章 前10条

1 于文静 卞峗;今年我国为何频发强对流天气[N];新华每日电讯;2009年

2 申家莲 赵青松 本报记者 赵昕;强对流天气缘何频频“不速而至”[N];巢湖日报;2009年

3 首席记者 卞景海 刘文福;当强对流天气成为常态[N];牡丹江日报;2011年

4 本报记者 刘毅;强对流天气来了[N];人民日报;2013年

5 记者 宛霞 通讯员 刘鑫华;南方进入强对流多发季[N];中国气象报;2013年

6 本报记者 鲍晓倩;强对流天气如何测怎么防[N];经济日报;2013年

7 郭树人;第四大天灾:强对流天气[N];北京日报;2013年

8 中国经济导报记者 史颖;认识、预警、防范强对流天气[N];中国经济导报;2013年

9 记者 冯燕;近期我州还会有三次强对流天气[N];昌吉日报;2007年

10 王瑾;上海短时强对流预警平台建成[N];中国气象报;2008年

相关博士学位论文 前4条

1 苏涛;江淮下游地区强对流发生条件的实况分析与模拟[D];浙江大学;2017年

2 闵晶晶;京津冀地区强对流天气特征和预报技术研究[D];兰州大学;2012年

3 王晓峰;复杂下垫面环境上海局地强对流天气研究[D];中国气象科学研究院;2013年

4 周率;西昌卫星发射场区中尺度强对流天气研究[D];南京信息工程大学;2005年

相关硕士学位论文 前10条

1 丁伟;湖北两次强对流过程的数值模拟及五种云物理方案对比[D];南京信息工程大学;2015年

2 王越亚;两种集合同化方法在强对流天气个例中的应用研究[D];兰州大学;2016年

3 韩文宇;3DVar和SVD-En3DVar方法同化地闪资料试验研究[D];兰州大学;2016年

4 张莹;浙南中尺度山地对对流作用的研究[D];浙江大学;2016年

5 刘海;强对流天气识别与预报方法研究[D];天津大学;2014年

6 罗思泽;梧州前汛期强对流天气雷达回波特征分析[D];兰州大学;2016年

7 周一民;2010-2012年江淮黄淮地区暖季强对流过程统计分析[D];浙江大学;2017年

8 杜坤;多尺度资料在强对流天气预报中的应用[D];南京信息工程大学;2011年

9 华韵子;强对流天气识别系统的设计与实现[D];华东师范大学;2010年

10 席世平;中尺度地形对河南省强对流天气影响的数值模拟和诊断分析[D];南京信息工程大学;2007年



本文编号:2437909

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2437909.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户dede3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com