实验研究铷原子蒸汽中脉冲真空压缩态的建立过程
[Abstract]:The emergence of squeezed light science has a great influence on the whole field of physics. The squeezed light field produced by a variety of nonlinear optical processes and its performance optimization are the research hotspots in the field of quantum optics. In the field of quantum information and quantum precision measurement, pulse compressed light has a very wide range of applications. The study of its generation and noise changes provides a preliminary preparation for the subsequent quantum communication experiments with continuous variables. After decades of research, there are many methods to generate pulse squeezed light field, including optical parametric oscillations, photomechanics, interaction between light and atomic ensemble, and so on. The spectral bandwidth of nonlinear optical conversion in crystals is quite wide (about several nanometers), while the bandwidth of light-atom interaction systems such as electromagnetically induced transparency or Raman resonance usually does not exceed the order of MHz. Therefore, the compression sources interacting with these systems need to have excellent noise suppression performance at narrow bandwidth frequency. In addition to the scheme of crystal compression source, the nonlinear optical process in atomic medium can also produce nonlinear light field, such as the non-degenerate four-wave mixing process can produce two-mode squeezed state and entangled light field with nanosecond pulse width. A similar non-degeneracy process can produce orthogonal squeezed vacuum field, which researchers call optical polarization self-rotating compression. All the experiments in this paper are based on this scheme. The optimal noise compression of this method is-3dB. Of course, most of the research on polarization self-rotating compression is the generation of continuous light field. For the generation of pulse squeezed light field, the establishment process of pulse squeezed state, the evolution of noise intensity of signal light field is rarely involved. Based on this background, we focus on the pulse vacuum squeezed state produced by polarization self-rotation utility in thermal rubidium 87 atomic ensemble, and use balanced zero beat detection to collect the orthogonal components of the compression field, based on the previous research. The phase average processing of the orthogonal component is carried out, and the evolution of the noise intensity of the pulse signal light with time is measured. It is observed that the signal light noise has experienced a sharp fluctuation of the interaction time in the order of microseconds from the classical thermal state. Finally, the process of falling back to the vacuum squeezed state.
【学位授予单位】:华东师范大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O431.2
【相似文献】
相关期刊论文 前10条
1 林仁明;;压缩真空态、相干态和压缩态的生成[J];福建师范大学学报(自然科学版);1987年03期
2 彭X墀;李军;黄茂全;谢常德;靳少征;李瑞宁;郭光灿;周寿桓;吴令安;;光场压缩态产生的实验研究[J];量子电子学;1988年02期
3 曾爱华,曾浩生,匡乐满;奇偶压缩态是类虚化态[J];湖南大学学报(自然科学版);1998年03期
4 赵玉芳,杨伯君,张晓光;光纤损耗对孤子压缩态的影响[J];量子光学学报;2002年S1期
5 范洪义,郭光灿;压缩算符的新形式与压缩态的各种表示和性质[J];光学学报;1985年09期
6 李希曾,单莹;光的压缩态的几个定义及其等价性[J];量子电子学;1987年02期
7 孙万钧;;压缩态的放大[J];量子电子学;1988年02期
8 吴令安;冲破量子极限——光压缩态[J];现代物理知识;1989年02期
9 林克强;;量子压缩态及其熵[J];上饶师专学报(自然科学版);1989年02期
10 杨伯君,李荣华,于丽;光纤损耗对光脉冲压缩态的影响[J];量子光学学报;2001年04期
相关会议论文 前4条
1 赵玉芳;杨伯君;张晓光;;光纤损耗对孤子压缩态的影响[A];第十届全国量子光学学术报告会论文论文集[C];2002年
2 路洪;陈立冰;林洁丽;;纠缠压缩态构造的贝尔基的测量与量子隐形传态(英文)[A];大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集[C];2004年
3 王朝全;於亚飞;张智明;;在混合系统中以磁通比特为媒介产生纳米机械振子的压缩态[A];第十五届全国量子光学学术报告会报告摘要集[C];2012年
4 潘庆;王海;张云;苏红;谢常德;彭墀;;光场压缩态的产生和应用[A];第八届全国量子光学学术报告会论文摘要选[C];1998年
相关博士学位论文 前2条
1 王帅;非高斯压缩态及其非经典性质的研究[D];上海交通大学;2013年
2 张纪英;动力学退耦合方法在生成簇态和自旋压缩态中的应用[D];中国科学技术大学;2014年
相关硕士学位论文 前5条
1 李政军;实验研究铷原子蒸汽中脉冲真空压缩态的建立过程[D];华东师范大学;2017年
2 卢兆山;相位压缩态的制备及线性原子干涉仪的研究[D];北京交通大学;2011年
3 吴妙鑫;基于光子回声技术的光压缩态存储研究[D];温州大学;2014年
4 朱兴邦;声子压缩态与声学声子压缩效应的研究[D];华中科技大学;2007年
5 王俊锋;铁磁体中磁振子的压缩态的研究[D];华中科技大学;2006年
,本文编号:2482776
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/2482776.html