基于电正性复合材料聚苯胺-氧化石墨烯的摩擦纳米发电机研究
发布时间:2024-02-04 03:35
如今,摩擦电纳米发电机(TENG)已成为最受欢迎的能量收集技术之一,该技术将废弃的机械能转化为电能以进行再利用。为了制造更高效率的更好的能量转换,已经做出了巨大的努力来制造不同的TENG装置,但是现有的低性能的摩擦材料限制了 TENG的应用。因此,迫切需要开发低成本,环境友好,合成工艺简单,高效的新型摩擦材料。为此本课题将摩擦学正性材料(聚苯胺(PANI))与摩擦学负性材料(氧化石墨烯(GO))相结合形成一种新型的摩擦学正性材料用于TENG。在外力作用下,PANI和GO的结合引入了一种新的机制,为材料内部的电子流动创造了一个通道。这一机制有助于将一些额外的电子从摩擦正极材料的非接触区转移到摩擦负性层,从而增加表面电荷密度结果,使TENG装置的电气性能得以提高。本文通过将700μL PANI和4 mg/ml GO结合形成的摩擦学正性材料与聚二甲基硅氧烷(PDMS)组合为三层结构,制得尺寸为1 ×2 cm2的TENG器件。这种TENG器件在50N的外力和5Hz的频率下,有可能产生314.92 V的开路电压和37.81 mA/m2的电流密度,峰值功率密度为10.43 W/m2。所获得的功率能...
【文章页数】:89 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
Glossary of Abbreviations
Chapter 01 Introduction
1.1 Motivation
1.2 Mechanical Energy Harvesting Technology
1.2.1 Pyroelectric Nanogenerator (PyNG)
1.2.2 Piezoelectric Nanogenerator (PENG)
1.2.3 Triboelectric Nanogenerator (TENG)
1.3 Basic Components of TENG
1.3.1 Tribopositive Materials
1.3.2 Tribonegative Materials
1.4 Basic Working Principle of TENG
1.4.1 Triboelectric Effect
1.4.2 Electrostatic Induction
1.5 Fundamental Working Modes of TENG
1.5.1 Vertical Contact-Separation Mode
1.5.2 Lateral Sliding Mode
1.5.3 Single Electrode Mode
1.5.4 Freestanding Triboelectric Layer Mode
1.6 Recent Progress of TENG
1.6.1 Roadmap of Tribomaterials
1.6.2 Self-Powered Sensors
1.6.3 Harvesting Energy from Environment
Chapter 02 Synthesis of Materials and Device Fabrication
2.1 Materials Required
2.1.1 Preparation of Graphene Oxide (GO)
2.1.2 Preparation of Acryl Amide and Lauryl Acrylate Based Porous Polymer
2.1.3 Preparation of Polyaniline (PANI) Based Film
2.1.4 Preparation of GO and PANI Induced Polymer Film
2.1.5 Synthesis of PDMS Layer
2.2 TENG Device Fabrication
2.3 Measurement and Characterization
Chapter 03 Experimental Analysis of TENG Device
3.1 TENG Device Description
3.2 Material Surface Morphology
3.3 Interaction Between PANI and GO
3.4 Electrical Performance of Fabricated TENG Devices
3.4.1 Performance of Pure Porous Polymer Film
3.4.2 Effect of PANI
3.4.3 Effect of GO in the Presence of PANI
3.4.4 Power Density
3.5 Effect of Externally Applied Parameters
3.5.1 External Force
3.5.2 Spacer Distance
3.6 Mechanical and Thermal Stability
3.7 Electrical Performance with Different Tribonegtaive Materials
3.8 Working Mechanism
3.8.1 Working Mechanism of Porous Film for Contact-Separation Mode
3.8.2 Electron Pathway Based Working Mechanism
3.8.3 Verification of Working Mechanism
3.9 Validation of High Performance of Device
3.9.1 Kelvin Probe Force Microscopy (KPFM)
3.9.2 Fourier Transformed Infrared Ray (FTIR)
3.9.3 Raman Spectroscopy
3.10 Comparative Analysis
3.11 Applications of Fabricated TENG Device
3.11.1 LEDs Blinking
3.11.2 Charging of Capacitors
Chapter 04 Conclusion and Future Work
4.1 Conclusion
4.2 Future Work
List of References
Acknowledgements
Paper List
本文编号:3895139
【文章页数】:89 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
Glossary of Abbreviations
Chapter 01 Introduction
1.1 Motivation
1.2 Mechanical Energy Harvesting Technology
1.2.1 Pyroelectric Nanogenerator (PyNG)
1.2.2 Piezoelectric Nanogenerator (PENG)
1.2.3 Triboelectric Nanogenerator (TENG)
1.3 Basic Components of TENG
1.3.1 Tribopositive Materials
1.3.2 Tribonegative Materials
1.4 Basic Working Principle of TENG
1.4.1 Triboelectric Effect
1.4.2 Electrostatic Induction
1.5 Fundamental Working Modes of TENG
1.5.1 Vertical Contact-Separation Mode
1.5.2 Lateral Sliding Mode
1.5.3 Single Electrode Mode
1.5.4 Freestanding Triboelectric Layer Mode
1.6 Recent Progress of TENG
1.6.1 Roadmap of Tribomaterials
1.6.2 Self-Powered Sensors
1.6.3 Harvesting Energy from Environment
Chapter 02 Synthesis of Materials and Device Fabrication
2.1 Materials Required
2.1.1 Preparation of Graphene Oxide (GO)
2.1.2 Preparation of Acryl Amide and Lauryl Acrylate Based Porous Polymer
2.1.3 Preparation of Polyaniline (PANI) Based Film
2.1.4 Preparation of GO and PANI Induced Polymer Film
2.1.5 Synthesis of PDMS Layer
2.2 TENG Device Fabrication
2.3 Measurement and Characterization
Chapter 03 Experimental Analysis of TENG Device
3.1 TENG Device Description
3.2 Material Surface Morphology
3.3 Interaction Between PANI and GO
3.4 Electrical Performance of Fabricated TENG Devices
3.4.1 Performance of Pure Porous Polymer Film
3.4.2 Effect of PANI
3.4.3 Effect of GO in the Presence of PANI
3.4.4 Power Density
3.5 Effect of Externally Applied Parameters
3.5.1 External Force
3.5.2 Spacer Distance
3.6 Mechanical and Thermal Stability
3.7 Electrical Performance with Different Tribonegtaive Materials
3.8 Working Mechanism
3.8.1 Working Mechanism of Porous Film for Contact-Separation Mode
3.8.2 Electron Pathway Based Working Mechanism
3.8.3 Verification of Working Mechanism
3.9 Validation of High Performance of Device
3.9.1 Kelvin Probe Force Microscopy (KPFM)
3.9.2 Fourier Transformed Infrared Ray (FTIR)
3.9.3 Raman Spectroscopy
3.10 Comparative Analysis
3.11 Applications of Fabricated TENG Device
3.11.1 LEDs Blinking
3.11.2 Charging of Capacitors
Chapter 04 Conclusion and Future Work
4.1 Conclusion
4.2 Future Work
List of References
Acknowledgements
Paper List
本文编号:3895139
本文链接:https://www.wllwen.com/shoufeilunwen/benkebiyelunwen/3895139.html