曲面抛光平台几何误差分析与补偿研究
[Abstract]:Optical surface parts are widely used in the fields of national defense, aerospace, biomedicine and so on. Because of its special geometric characteristics, hard and brittle material properties and high surface precision, the precision of machining equipment is required harshly. How to achieve high precision, high efficiency and low cost of optical surface machining has caused the deep research of domestic and foreign scholars. Because geometric error is the main error source of machine tool error, it is very important to improve the machining accuracy of optical curved surface parts by analyzing the geometric error of optical surface machining platform and compensating it. This paper is supported by the National key basic Research and Development Program (973 Program) project "basic Research on Optical Free Surface Manufacturing", a subproject "physical Analysis and Reconstruction Strategy of Optical Free Surface forming process" (Project number 2011CB706702). Taking the four-axis polishing platform as the research object, the geometric error detection, modeling and compensation theory of the four-axis polishing platform, including the rotating axis, are systematically studied. The multi-body system theory and the differential transformation matrix are used to model the synthetic error respectively. Finally, the compensation value of the surface machining trajectory is obtained to reduce the geometric error. The relative position relationship between moving parts of moving axis and original parts is characterized under the influence of geometric errors, and the homogeneous coordinate transformation matrix between moving parts and theoretical positions of moving parts of moving axes is finally obtained under the influence of geometric errors. The geometric errors of the four-axis polishing platform were measured with Renishaw laser interferometer. The errors between axes, alignment errors, straightness errors, pitch and deflection angle errors and rotation axis positioning errors were obtained respectively. On this basis, the model of geometric error is established by using the theory of multi-body system. The thermal error is separated from the geometric error by means of multiple measurements and polynomial fitting, and the thermal error is eliminated from the measured data. The geometric error distribution after separation is studied, and the random error is eliminated by calculating the mathematical expectation. Finally, the real geometric error measurement data are obtained. The discrete measurement data are characterized by NURBS curve, and the NURBS error curve, which meets the precision requirement and has less data, is obtained after optimization, which can be used in the research of error compensation. The synthetic error compensation algorithm of four-axis polishing platform is studied by using multi-body system theory and Newton iteration method. The kinematics model of the experimental platform considering geometric errors is established. The nonlinear coupling characteristics of the transformation matrix from tool coordinate system to workpiece coordinate system are analyzed. Newton iteration method is used to solve the nonlinear equations. By using the Jacobian matrix of the theoretical kinematics model instead of the Jacobian matrix considering the geometric error kinematics model, the solving process is simplified and the computational efficiency is improved. Because the Newtonian iterative error compensation method based on the theory of multi-body system is unstable in calculation and is not convenient for on-line real-time compensation, a comprehensive error modeling and compensation method based on differential matrix is proposed in this paper. The differential transformation matrix of the moving axes relative to the workpiece coordinate system is established, and the change of the tool path under the influence of geometric errors is obtained. The geometric error compensation value is calculated by using the pseudo inverse matrix of Jacobian matrix. Compared with Newton iteration method, the proposed differential method is convenient to realize real-time error compensation.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TH74
【相似文献】
相关期刊论文 前10条
1 粟时平,李圣怡,王贵林;三轴机械几何误差辨识新方法的研究[J];中国机械工程;2002年21期
2 张冲;张东升;陶涛;梅雪松;;西门子840D/810D几何误差补偿研究[J];机械工程师;2011年01期
3 高秀峰;刘春时;李焱;林剑峰;;立式双摆角铣头几何误差数学建模与解耦研究[J];制造技术与机床;2011年12期
4 高秀峰;刘春时;李焱;林剑峰;;双轴转台几何误差数学建模与解耦研究[J];制造技术与机床;2012年01期
5 黄祥;;基于改进单纯形法的零件几何误差评定[J];井冈山大学学报(自然科学版);2013年03期
6 朱民生;滚刀几何误差分析与计算[J];机床;1985年05期
7 赵耀军;数控车床的几何误差[J];淮南矿业学院学报;1993年02期
8 袁慧坤;合成孔径旁视雷达图象几何误差的校正[J];光学学报;1984年08期
9 陈志祥;机床导轨几何误差激光测量方法的研究[J];华中工学院学报;1984年06期
10 赖喜德;大型叶片五轴联加工的几何误差控制(英文)[J];四川工业学院学报;2003年01期
相关会议论文 前3条
1 粟时平;李圣怡;王贵林;;三轴机械几何误差辨识新方法的研究[A];面向21世纪的生产工程——2001年“面向21世纪的生产工程”学术会议暨企业生产工程与产品创新专题研讨会论文集[C];2001年
2 沈金华;杨建国;王正平;;基于LDDM的数控机床几何误差高效辨识[A];2005年中国机械工程学会年会论文集[C];2005年
3 江游;方向;张小华;丁传凡;;几何误差对四极杆质量分析器分辨率的影响[A];2007'仪表,自动化及先进集成技术大会论文集(一)[C];2007年
相关博士学位论文 前6条
1 邹华兵;微V槽超精密机床几何误差建模及补偿算法的研究[D];广东工业大学;2015年
2 郭崇颖;复杂产品几何误差评定与装配精度预测研究[D];北京理工大学;2015年
3 赵帼娟;曲面抛光平台几何误差分析与补偿研究[D];吉林大学;2017年
4 刘焕牢;数控机床几何误差测量及误差补偿技术的研究[D];华中科技大学;2005年
5 李小力;数控机床综合几何误差的建模及补偿研究[D];华中科技大学;2006年
6 范开国;数控机床多误差元素综合补偿及应用[D];上海交通大学;2012年
相关硕士学位论文 前10条
1 张玉;新GPS下几何误差评定优化算法的研究[D];河北联合大学;2014年
2 Azamat Arynov;卧式三轴数控机床的几何误差建模与补偿[D];上海交通大学;2015年
3 黄克;基于检验试件的五轴机床几何误差分析与精度预测研究[D];电子科技大学;2015年
4 吴石磊;重型立式车铣复合加工中心几何误差检测方法研究[D];哈尔滨工业大学;2015年
5 王一飞;重型机床装配的多柔体模型及其误差算法[D];哈尔滨理工大学;2015年
6 徐健;基于特征样件机床几何误差分离的在机测量技术研究[D];哈尔滨理工大学;2016年
7 王涛;五轴数控机床旋转轴几何误差辨识及补偿研究[D];南京航空航天大学;2016年
8 李鹏跃;AH130数控铣镗床几何误差测量及补偿方法研究[D];大连理工大学;2015年
9 金瑶;几何误差检测平台的建立与研究[D];安徽农业大学;2016年
10 马礼鹏;多轴数控机床加工系统仿真研究[D];沈阳工业大学;2017年
,本文编号:2345229
本文链接:https://www.wllwen.com/shoufeilunwen/gckjbs/2345229.html