高能射流式液动锤理论与实验研究

发布时间:2018-05-03 05:20

  本文选题:干热岩钻井 + 高能射流式液动锤 ; 参考:《吉林大学》2017年博士论文


【摘要】:地热能是一种绿色低碳、可循环利用的可再生能源,具有储量大、分布广、清洁环保、稳定可靠等特点,是一种现实可行且具有竞争力的清洁能源。与水热型地热资源相比,更多的地热能储存于地下无水或少水的高温岩体中形成干热岩型地热资源。中国地质调查局与中国科学院均对中国大陆3~10 km深的干热岩资源总量进行了评估,得出了相近的结论,其中按2%的可开采量来计算,就相当于2 010年中国能源消耗总量的4 000~6 000倍,印证了中国干热岩资源开发利用的巨大前景。钻井是干热岩开发的关键环节,对工程总成本与建设周期具有重大影响。干热岩地层多为火成岩与变质岩,强度大,硬度高,可钻性差,常规方法钻进,效率低,周期长,如青海贵德ZR1干热岩井平均钻速为1.24 m/h;钻遇500℃花岗岩地层的日本KAKKONDA井,平均钻速为2.21 m/h,大大低于油气钻井10 m/h以上的平均钻速。潜孔锤钻进技术为大幅提高干热岩硬岩钻进效率提供了可能。液动潜孔锤与气动潜孔锤相比,由于其驱动介质的不可压缩性,在深孔及超深孔的高围压工作条件下适应性更强,并且效率高,能耗低,应用领域更为广泛。然而,目前常规液动锤的单次冲击功与气动潜孔锤相比要小得多,因而碎岩效率也低得多,应用效果远不及气动潜孔锤。国内外多家研究机构、钻具公司及钻井技术服务公司对适合深井硬岩钻进的高能型液动潜孔锤进行了研究,取得了一定了进展,然而多处于设计研发阶段,还未有广泛应用于市场的成熟产品。本文针对提高干热岩钻井效率和降低成本的迫切需要,提出了干热岩快速钻井用高能射流式液动锤。研制具有单次冲击功大、寿命长、工作稳定性好的高能型射流式液动锤钻进工具,并开展射流式液动锤内部动力过程研究,设计了SC86H型高能射流式液动锤钻具,完成了理论计算与数值分析,并通过台架试验与钻进试验验证了样机的工作性能。本文的主要研究内容与结论如下:(1)针对常规射流式液动锤单次冲击功低,射流元件与缸体耐冲蚀性差,寿命短的问题,设计了高能型射流式液动锤钻具系统,具有单次冲击功大、耐冲蚀、寿命长的特点。为干热岩快速钻井提供了技术支持。(2)基于计算流体动力学技术,采用动网格技术与用户自定义函数的方法,借用cfd软件fluent对高能射流式液动锤内部动力过程进行了研究,通过可视化分析技术得出了射流元件工作腔内部流场分离涡、阻碍涡、以及驻涡在不同活塞运动瞬间的流场变化情况。分析认为:主射流通过卷吸两侧控制道甚至在活塞高速运动下卷吸附壁侧排空道以及非附壁侧回流的部分流体,来完成流量补充,实现高流量恢复的工作状态,有利于活塞冲锤高速运动。(3)通过数值模拟得出了活塞运动过程中压力恢复系数与流量恢复系数关系,结果表明,压力恢复系数随着流量恢复系数的增加而增大,二者关系几乎完全不受雷诺数(高雷诺数条件下,低雷诺数条件下结果未知)变化影响。(4)通过数值计算结果分析与公式推导得出高能射流式液动锤单次冲击功e与主射流平均流速u或者主射流流量qs的平方成正比例关系;当输入流量qs一定时,在不考虑交互作用时,较小的主喷嘴截面积as与较小的活塞截面积ap意味着较大的单次冲击功;此外,当活塞结构参数保持不变时,表征压力恢复系数与流量恢复系数之间关系的无量纲系数cpq值越小单次冲击功越大,即在活塞加速运动过程中压力恢复系数随着流量恢复系数的增加衰减的越慢,表示射流元件的性能越好,越有利于高能输出。因此,无量纲系数cpq可作为评价射流元件性能的基本参数。(5)通过数值模拟研究了不同活塞冲锤结构参数下高能射流式液动锤性能的变化规律。研究表明:为了使高能射流式液动锤获得较好的工作性能,活塞直径可适当小点;而活塞杆直径与冲锤质量需要合理选择,活塞杆直径或冲锤质量过大会使射流式液动锤的冲击频率明显降低并且临界流速增加,整体工作性能下降,而活塞杆直径或冲锤质量过小,单次冲击功相对较低;至于活塞冲击行程,可适当增大行程来提高单次冲击功,但过大的冲击行程同样会导致冲击频率大幅下降。(6)将冲锤处的流体阻力考虑在计算模型中,对之前计算模型进行了改进,并对两种计算模型结果进行实验验证,表明高能射流式液动锤活塞冲锤运动速度较高,流体阻力不能忽略,为此,设计了适合高能射流式液动锤的低阻高效冲锤结构。(7)开展了sc86h型高能射流式液动锤钻具系统室内台架试验,采用声波法与设计的非接触测量系统对高能射流式液动锤的性能参数进行了测试,并与数值模拟计算结果进行对比,表现了良好的吻合度,印证了数值计算结果的准确性。(8)分别对创新设计的两种新结构射流元件与原结构射流元件控制的高能射流式液动锤性能进行了试验与数值模拟分析,发现新型射流元件与原结构射流元件相比具有较好的工作性能。(9)开展坚硬花岗岩钻进试验,对不同活塞冲锤结构参数下高能射流式液动锤的机械钻速进行了测试,试验结果与数值模拟分析结果具有类似的趋势,说明了数值模拟结果对实际钻进具有重要的参考意义,试验中最高机械钻速5.19 m/h,与常规钻进方法相比提高幅度达数倍。论文的主要创新点有:(1)本文首次提出了采用高能型射流式液动锤配合硬质合金球齿钻头进行冲击为主,回转切削为辅的钻进方法;(2)首次提出了采用硬质合金材料加工制造射流元件与活塞,设计了硬质合金材料的缸体衬套和活塞杆衬套结构,并首次提出了内通道一体式缸体结构,从而使射流式液动锤整体达到耐冲蚀、耐磨损,使射流式液动锤的使用寿命大幅提高;(3)首次将冲锤处流体阻力考虑到计算模型中,使计算精度明显提高,更准确可靠地完成对高能射流式液动锤工作性能的预测;(4)首次提出并设计了信号道侧置式双面排空射流元件,并取得了良好的试验效果,该新型结构射流元件有望全面替代原有结构元件,成为新一代射流元件结构,此外,理论计算表明,创新设计的短劈间距涡流腔式射流元件拥有更好的工作性能。
[Abstract]:Geothermal energy is a kind of renewable energy, which is green, low carbon and recyclable. It has the characteristics of large reserves, wide distribution, clean and environmental protection, stable and reliable and so on. It is a practical and competitive clean energy. Compared with the hydrothermal geothermal resources, more geothermal energy is stored in the dry and hot rock in the high temperature rock mass without water or water. Thermal resources. Both the China Geological Survey and the Chinese Academy of sciences have evaluated the total amount of dry hot rock resources of the 3~10 km deep in the mainland of China, and reached a similar conclusion, which is calculated by 2% of the recoverable amount, which is equivalent to the 4 000~6 000 times of the total energy consumption in China in 2010, which confirms the great prospect of the development and utilization of China's dry hot rock resources. Drilling is the key link in the development of dry hot rock and has great influence on the total cost and construction period of the engineering. The dry hot rock strata are mostly pyrogenic and metamorphic rocks, with high strength, high hardness, poor drillability, conventional drilling, low efficiency and long period, such as the average drilling speed of 1.24 m/h in the ZR1 dry hot rock in Guide, Qinghai, and KA of Japan in the granite stratum of 500 C In well KKONDA, the average drilling speed is 2.21 m/h, which is much lower than the average drilling speed above 10 m/h in the oil and gas drilling. The DTH hammer drilling technique provides the possibility of drastically improving the drilling efficiency of the hard rock hard rock. Compared with the pneumatic DTH hammer, the hydraulic dive hammer is adapted to the high confining pressure of the deep hole and the ultra deep hole because of the incompressibility of the driving medium. However, the single impact power of the conventional hydraulic hammer is much smaller than that of the pneumatic DTH hammer at present, so the efficiency of rock breaking is much lower and the application effect is far less than the pneumatic DTH hammer. Many domestic and foreign research institutions, drilling and drilling technology services companies are suitable for deep well hard. The high energy hydraulic DTH hammer in rock drilling has been studied, and some progress has been made. However, most of them are in the stage of design and development, and there are no mature products widely used in the market. In this paper, the high energy jet hydraulic hammer for dry hot rock rapid drilling is put forward in order to improve the efficiency and cost of dry hot rock drilling. A high energy jet hydraulic hammer drilling tool with a long single impact power, long life and good working stability is studied and the internal dynamic process of the jet hydraulic hammer is studied. The SC86H high energy jet hydraulic hammer drilling tool is designed. The theoretical calculation and numerical analysis have been completed, and the working performance of the prototype is verified by the bench test and the drilling test. The main research contents and conclusions are as follows: (1) in view of the low single impact power of the conventional jet hydraulic hammer, the poor erosion resistance of the jet element and the cylinder body and the short life, the high energy jet hydraulic hammer drilling tool system has been designed, which has the characteristics of large single impact power, erosion resistance and long life. (2 Based on the computational fluid dynamics (CFD) technology, the dynamic process of the high energy jet hydraulic hammer is studied by using the method of dynamic grid technology and user defined function, and the CFD software FLUENT is used to study the internal dynamic process of the high energy jet hydraulic hammer. The flow separation vortex, hindering vortex, and the transient motion of the piston in the different piston motion are obtained by the visualization analysis technique. It is considered that the main jet can carry out the flow supplement and achieve the high flow recovery working state, which is beneficial to the high speed movement of the piston punching hammer through the coiling two side control channel, even in the high speed movement of the piston, and it is beneficial to the high speed movement of the piston punching hammer. (3) a piston is obtained by numerical simulation. The relationship between the pressure recovery coefficient and the flow recovery coefficient during the movement shows that the pressure recovery coefficient increases with the increase of the flow recovery coefficient, and the relationship between the two is almost completely unaffected by the Reynolds number (under the high Reynolds number, the result is unknown under the low Reynolds number). (4) the analysis of numerical results and the derivation of the formula are derived. The single impact power e of high energy jet hydraulic hammer is proportional to the average flow velocity of u or the square of the main jet flow QS. When the input flow QS is certain, the smaller main nozzle section area as and the smaller piston cross section area AP mean greater single impact power when the input flow rate is not considered, and the piston structure parameters are maintained. At the same time, the less dimensionless coefficient CPQ that characterizing the relation between the pressure recovery coefficient and the flow recovery coefficient is the smaller the single impact power, that is, the slower the pressure recovery coefficient decreases with the increase of the flow recovery coefficient during the piston acceleration movement, the better the performance of the jet element is, the more advantageous to the high energy output. Therefore, the dimensionless system is not a dimensionless system. The number of CPQ can be used as the basic parameter to evaluate the performance of the jet element. (5) the variation of the performance of high energy jet hydraulic hammer under the structural parameters of different piston punching hammer is studied by numerical simulation. The study shows that in order to make the high energy jet hydraulic hammer get better working performance, the piston straight diameter can be properly smaller, and the diameter of the piston rod and the mass of the hammer are the quality of the hammer. A reasonable selection is needed. The piston rod diameter or the mass of the hammer can reduce the impact frequency of the jet hydraulic hammer obviously and increase the critical velocity, and the overall working performance decreases, while the piston rod diameter or the hammer mass is too small and the single impact work is relatively low. As for the piston impact stroke, the stroke can be increased to improve the single impact power. The excessive impact stroke will also lead to a large drop in the impact frequency. (6) the fluid resistance at the hammer is considered in the calculation model, and the previous calculation model has been improved, and the results of the two calculation models are verified by experiments. It shows that the high energy jet hydraulic hammer piston punching hammer has higher velocity and the fluid resistance can not be ignored. For this reason, it is set up. The low resistance and high efficiency hammer structure suitable for high energy jet hydraulic hammer is considered. (7) the indoor bench test of the sc86h high energy jet hydraulic hammer drilling system is carried out. The performance parameters of the high energy jet hydraulic hammer are tested by the non contact measurement system of sound wave and design, and the results are compared with the numerical simulation results. The good coincidence degree proves the accuracy of the numerical calculation results. (8) the performance of the high energy jet hydraulic hammer controlled by the two new structural jet elements and the original structure jet components is tested and numerical simulated respectively. It is found that the new jet element has better working performance compared with the original structure jet element. (9) The mechanical drilling speed of high energy jet hydraulic hammer under the structural parameters of different piston punching hammer is tested. The test results have a similar trend with the numerical simulation analysis results. It shows that the numerical simulation results have important reference significance for actual drilling, and the maximum mechanical drilling speed in the test is 5.19 m/h, and it is common. The main innovations of this paper are as follows: (1) for the first time, the high energy jet hydraulic hammer and hard alloy ball tooth bit are used as the main drilling method, and (2) the hard alloy material is first proposed to manufacture the jet element and the piston. The cylinder liner and piston rod bushing structure of the material are made, and the inner channel body structure is put forward for the first time, which makes the jet hydraulic hammer whole to resist erosion and wear resistance, so that the service life of the jet hydraulic hammer is greatly improved. (3) for the first time, the fluid resistance of the punching hammer is taken into account in the calculation model, and the calculation precision is obviously improved. The prediction of the working performance of high energy jet hydraulic hammer is completed more accurately and reliably. (4) the side double side exhaust jet element of the signal channel is proposed and designed for the first time, and good experimental results have been obtained. The new structure jet element is expected to replace the original structural element completely and become a new generation of jet element structure. In addition, the theoretical calculation table is also made. Ming, the innovative design of the short split distance vortex cavity jet element has better performance.

【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:P634.5

【相似文献】

相关期刊论文 前7条

1 李发东;;KSC-127射流式液动锤在科钻一井中的应用分析[J];地质科技情报;2006年06期

2 刘麦贵;;SXJ-1型射流式洗井机通过技术鉴定[J];河南科技;1991年07期

3 李斌;李兰;焦路光;刘亮;周琼;袁圣付;刘文广;;射流式水冷镜结构优化设计[J];强激光与粒子束;2011年04期

4 索忠伟;殷琨;徐克里;于平;;射流式液动锤内部动力过程的数学模型及仿真分析[J];吉林大学学报(地球科学版);2007年01期

5 吴宝根,李旭昌,卢锡年,蒋筱筠,李富岭,陈文武,桑凤亭,杨伯龄;射流式O_2(~1△)发生器射流破断长度测量[J];强激光与粒子束;2000年S1期

6 王秋玲;;射流式水泥浆液制造器的研究[J];中国煤炭地质;2010年05期

7 刘万发,郭敬为,桑风亭;射流式O_2(~1Δ)发生器的理论[J];量子电子学报;1999年04期

相关会议论文 前1条

1 王双喜;王旭;李贵忠;;射流式CO_2气体补偿系统的设计及应用研究[A];纪念中国农业工程学会成立30周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[C];2009年

相关重要报纸文章 前1条

1 靳朋勃;我市“新型射流式节水灌溉设备的完善与中试”成果国际先进[N];镇江日报;2009年

相关博士学位论文 前3条

1 吴冬宇;高能射流式液动锤冲击系统理论研究及关键结构优化分析[D];吉林大学;2017年

2 张鑫鑫;高能射流式液动锤理论与实验研究[D];吉林大学;2017年

3 柳鹤;射流式水力振荡器理论分析与试验研究[D];吉林大学;2014年

相关硕士学位论文 前8条

1 赵立峰;射流式离心泵内部流动及空化特性研究[D];江苏大学;2016年

2 柴舵;基于等温容器的射流式真空发生器流量特性快速检测技术研究[D];南京理工大学;2016年

3 周贵平;射流式自吸离心泵的研究[D];江苏大学;2006年

4 韩宇;真空喷射镀膜射流流场数值模拟与雾化建模[D];东北大学;2010年

5 刘旭;油井射流排砂泵固液两相流场数值分析[D];吉林大学;2011年

6 叶忠明;射流式自吸离心泵的设计理论、数值模拟及实验研究[D];江苏大学;2005年

7 刘晓荣;旋—射流式干燥器的设计与实验研究[D];中南林业科技大学;2013年

8 程肖岐;射流式旋涡发生器对扩压叶栅端区流动的主动控制研究[D];哈尔滨工业大学;2014年



本文编号:1837155

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/1837155.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0dd7f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com