利用烟道气培养能源微或小球藻和栅藻的研究
本文选题:产油微藻 + 产碳水化合物微藻 ; 参考:《中国科学院研究生院(武汉植物园)》2016年博士论文
【摘要】:微藻生物能源是最有潜力代替传统化石燃料解决当今能源危机和环境污染问题的可再生能源。目前,微藻生物能源的生产受制于高培养成本、低产能效率,为了促进其产业化的发展,不仅要筛选优良的微藻藻种,还必须降低微藻培养成本、提高产能效率。在培养微藻生产油脂的同时进行烟道气二氧化碳的固定,这是目前国内外公认的提高微藻产能的途径,而烟道气中氮氧化物、硫氧化物的存在为微藻固定烟道气二氧化碳带来了困难。本文一方面研究了模拟烟道气(15% CO2、0.03% SO2、0.03% NO,N2平衡,V/V)对产油微藻蛋白核小球藻(Chlorella pyrenoidosa XQ-20044)生长和油脂积累的影响,研究了产碳水化合物栅藻(Scenedesmus sp. KM17)室内外培养条件下的生长、固碳特征,另一方面研究了赤霉素(GA3)对产油微藻蛋白核小球藻(C. pyrenoidosa XQ-20044)生长和油脂积累的影响,以期将烟道气净化与微藻产油相耦合,促进微藻生物质积累,降低微藻生物柴油生产成本。主要结果如下:1.通过pH自动反馈方式控制烟道气的补充量,克服了烟道气对小球藻生长的抑制,提高了烟道气的固定效率,初步建立了小球藻产油、固碳、脱硫、除硝一体化模式。分批培养条件下,典型烟道气(15% CO2,0.03% SO2,0.03% NO)中的S02可以作为小球藻生长和油脂积累的硫源,但是只能提供其所需硫源的25.2%,需要在培养基中补充硫源;NO只能提供小球藻正常生长所需氮源的约2%,不能显著促进小球藻的生长和油脂积累,也没有表现出负面效应。经6d模拟烟道气培养,小球藻的总脂含量达到干重的38.0%;中性脂占总脂的81.2%;C16和C18在脂肪酸组成中相对含量最高,共占到脂肪酸总量的99.5%;饱和脂肪酸和单不饱和脂肪酸共占到脂肪酸总量的74.5%;模拟烟道气中CO2、SO2和NO的去除率分别达到95.9%、100%和84.2%。表明小球藻可以高效固定烟道气生产油脂。2.小球藻生长和油脂积累均受到NaNO3初始浓度的影响,2.35 mmol/L是小球藻半连续培养“分批培养阶段”的最适NaNO3初始浓度。不同的NaNO3补充率和培养基更新率组合均能实现小球藻的半连续培养,但不同组合对小球藻生物质产率、油脂含量和油脂产率的影响差异明显。当NaNO3补充率为0.12 mg/(L·d)]、更新率为30.0%时,小球藻的油脂含量(38.0%)显著其他处理(p0.05),且油脂产率最大[45.5 mg/(L·d)]。利用模拟烟道气培养小球藻,生物质产率、油脂含量和油脂产率分别达到0.17g/(L·d)、30.8%和51.9mg/(L·d),且模拟烟道气中CO2、SO2和NO的去除率分别为94.8%、100%、91.9%。此外,与分批培养相比,半连续培养的脂肪酸组成没有明显变化,但生物质产率、油脂产率和C02固定率分别提高了23.3%、9.6%和28.0%。3.植物生长调节剂GA3通过促进酯酶的活性和调节细胞内碳源的分配提高小球藻的生长和油脂积累。当GA3浓度为20 mg/L时,油脂含量和油脂产率均最大,分别为29.2%和17.1 mg/(L·d)。0.1~20 mg/L GA3处理,C16和C18均为主要的脂肪酸,他们共占到脂肪酸总量的91.5%以上。此外,高浓度的GA3(10和20mg/L)显著提高小球藻不饱和脂肪酸的含量(对照的1.6倍)。4.栅藻在室内柱式光生物反应器中培养8d,生物质干重达到1.53g/L;蛋白质含量、油脂含量和碳水化合物含量分别为干重的8.9%、20.6%和39.8%;生物质产率、二氧化碳固定率和碳水化合物产率分别为172.5 mg/(L·d)、310.5 mg/(L·d)和71.5mg/(L·d)。室外箱式反应器培养12 d,栅藻的蛋白质含量、总脂含量和碳水化合物含量分别达到干重的6.9%、15.5%和48.7%;生物质产率、二氧化碳固定率和碳水化合物产率分别为56.7 mg/(L·d)、102.1 mg/(L·d)和27.8 mg/(L·d)。室外5 m2开放式跑道池培养,栅藻平台末期的蛋白质含量、总脂含量和碳水化合物含量分别达到干重的11.8%,12.7%和45.0%;生物质产率、二氧化碳固定率和碳水化合物产率分别为67.5 mg/(L·d)、121.5 mg/(L·d)和30.5 mg/(L·d)。室内模拟烟道气培养与CO2培养栅藻的生物质干重几乎完全相同,碳水化合物含量也几乎一致。利用模拟烟道气培养栅藻第6天,生物质产率为0.14g/(L·d),碳水化合物含量达到48.7%(干重)。栅藻培养系统对烟道气中CO2、SO2和NO的去除率分别为94.5%、100%和98.5%。结果不仅表明,栅藻生长快、碳水化合物高、抗污染,是一株适合于室外规模化培养的优良产碳水化合物微藻,还表明了利用烟道气培养栅藻生产碳水化合物,为燃料乙醇生产提供原料的巨大潜力。本研究初步建立了小球藻产油、固碳、脱硫、除硝一体化模式(分批培养和半连续培养)和栅藻产糖、固碳、脱硫、除硝一体化模式,解决了利用工业废气C02培养能源微藻所面临的一些关键科学问题和技术难题;通过GA3处理,提高了小球藻的产油能力,为微藻生物能源研发提供了提供了新的技术途径。研究结果对于生物能源生产及环境污染治理具有重要意义。
[Abstract]:Microalgae biological energy is the most potential renewable energy to replace the traditional fossil fuel to solve the current energy crisis and environmental pollution problems. At present, the production of microalgae biological energy is subject to high cultivation cost and low productivity. In order to promote the development of its industrialization, it should not only screen fine algae species, but also reduce the culture of microalgae. In order to improve the productivity efficiency, it is a recognized way to improve the production capacity of microalgae at the same time, while cultivating microalgae to produce oil and oil, which is a recognized way to improve the productivity of microalgae at home and abroad, and the presence of oxides of sulfur in the flue gas is difficult for microalgae to fix the flue gas. In this paper, the simulated flue gas (15%) is studied. The effects of CO2,0.03% SO2,0.03% NO, N2 balance, V/V) on the growth and accumulation of oil producing microalgae Chlorella (Chlorella pyrenoidosa XQ-20044) were studied. The growth and carbon sequestration characteristics were studied under the incubation conditions of the carb algae (Scenedesmus sp. KM17). On the other hand, it was studied that gibberellin (GA3) had a nuclear pellet of microalgae producing microalgae. The effect of C. pyrenoidosa XQ-20044 growth and oil accumulation is expected to combine the flue gas purification with the microalgae producing oil phase, promote the accumulation of microalgae biomass and reduce the production cost of microalgae biodiesel. The main results are as follows: 1. the filling amount of flue gas is controlled by the automatic feedback of pH, and the inhibition of the growth of Chlorella in the flue gas is overcome. At the fixed efficiency of flue gas, a preliminary establishment of Chlorella production, carbon fixation, desulfurization and nitrate removal is established. Under batch culture, the S02 in typical flue gas (15% CO2,0.03% SO2,0.03% NO) can be used as a sulfur source for the growth of Chlorella and accumulation of oil, but only 25.2% of the sulfur source is provided for its required source, and the sulfur source should be supplemented in the medium. NO can only provide about 2% of the nitrogen source required for the normal growth of Chlorella. It can not significantly promote the growth and accumulation of Chlorella, and does not show negative effects. After 6D simulation of flue gas, the total lipid content of Chlorella can reach 38% of dry weight, 81.2% of the total fat, and the highest relative content of C16 and C18 in fatty acid composition. The total amount of fatty acids was 99.5%, saturated fatty acids and monounsaturated fatty acids accounted for 74.5% of the total fatty acids, and the removal rates of CO2, SO2 and NO in simulated flue gas were 95.9%, 100% and 84.2%. showed that Chlorella could be efficiently immobilized in flue gas, and the growth of.2. and the accumulation of oil were all affected by the initial NaNO3 concentration. 2. 35 mmol/L was the optimum initial concentration of NaNO3 in the semi continuous culture of Chlorella. The different NaNO3 supplementation and the medium renewal rate could achieve semi continuous culture of Chlorella, but the effects of different combinations on the biomass yield, oil content and oil yield of Chlorella were significantly different. When the rate of NaNO3 supplementation was 0.12 mg/ (L D)] when the rate of renewal is 30%, the oil content of Chlorella (38%) is significantly (P0.05), and the oil yield is maximum [45.5 mg/ (L. D). Using simulated flue gas to cultivate Chlorella, biomass yield, oil content and oil yield are 0.17g/ (L. D), 30.8% and 51.9mg/ (L d), respectively. In addition to 94.8%, 100%, 91.9%., there was no significant change in the composition of fatty acids in semi continuous culture compared with batch culture, but biomass yield, oil yield and C02 fixation rate increased by 23.3% respectively. 9.6% and 28.0%.3. plant growth regulator GA3 increased the growth of Chlorella by promoting esterase activity and regulating the distribution of intracellular carbon sources. Oil accumulation. When GA3 concentration is 20 mg/L, oil content and oil yield are the largest, respectively 29.2% and 17.1 mg/ (L. D).0.1 ~ 20 mg/L GA3, C16 and C18 are the main fatty acids, they account for more than 91.5% of the total fatty acids. Furthermore, the high concentration of GA3 (10 and 20mg/L) significantly increases the content of the unsaturated fatty acids of Chlorella. 1.6 times as well as.4.), 8D was cultured in an indoor column photo bioreactor. The dry weight of biomass reached 1.53g/L, protein content, oil content and carbohydrate content were 8.9%, 20.6% and 39.8% respectively, biomass yield, carbon dioxide fixed rate and carbohydrate yield were 172.5 mg/ (L. D), 310.5 mg/ (L. D) and 71.5mg respectively. / (L. D). The outdoor box reactor culture was 12 d, the protein content of the algae, the total fat content and carbohydrate content reached 6.9%, 15.5% and 48.7%, respectively, the biomass yield, the carbon dioxide fixed rate and the carbohydrate yield were 56.7 mg/ (L. D), 102.1 mg/ (L. D) and 27.8 mg/ (L d). Outdoor 5 open runway pool culture, gate The protein content, total fat content and carbohydrate content at the end of the algae platform reached 11.8%, 12.7% and 45%, respectively. Biomass yield, carbon dioxide fixed rate and carbohydrate yield were 67.5 mg/ (L. D), 121.5 mg/ (L. D) and 30.5 mg/ (L. D). The carbohydrate content was almost identical. Using simulated flue gas for sixth days, the yield of biomass was 0.14g/ (L. D), and the carbohydrate content reached 48.7% (dry weight). The removal rate of CO2, SO2 and NO in the flue gas was 94.5%, 100% and 98.5%. respectively, and the results not only showed that the growth of the algae was fast, and the carbon and water were combined. High quality, anti pollution, is a fine carb producing microalgae suitable for outdoor scale culture. It also shows the great potential of producing carbohydrates by using flue gas to produce carbs and providing raw materials for the production of fuel ethanol. This study has initially established a model for the integration of Chlorella producing, carbon fixation, desulfurization, and nitrate removal (batch culture and half connection). Continuous culture) and the production of sugar, carbon sequestration, desulphurization and denitrification integrated model, solved some key scientific problems and technical problems facing the use of industrial waste gas C02 to cultivate energy microalgae. Through the treatment of GA3, the oil producing ability of Chlorella was improved, and a new technical way was provided for the research and development of microalgae bio energy. Material and energy production and environmental pollution control is of great significance.
【学位授予单位】:中国科学院研究生院(武汉植物园)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q949.2
【相似文献】
相关期刊论文 前7条
1 ;锅炉烟道除尘器[J];科技简报;1972年04期
2 陈向民;李慧颖;李智勇;刘世瑞;;利用氨吸收电厂烟道气中的CO_2及对大气减排CO_2的分析[J];河北工业科技;2008年01期
3 李达,王传珊,徐加强;电子束净化烟道气的Monte-Carlo模拟[J];上海大学学报(自然科学版);2003年01期
4 王敦球,张文杰,钱莹,宋韶华;粉煤灰脱除烟道气SO_2实验[J];桂林工学院学报;2005年02期
5 尹文萱;刘建周;高丽平;江晶亮;王志华;;改性乙醇胺富集烟道气中CO_2的FTIR研究[J];光谱学与光谱分析;2011年05期
6 王鹏;李琳;韩晓冬;;烟道气吞吐技术在水敏性油藏开发中的应用[J];内江科技;2014年04期
7 ;[J];;年期
相关会议论文 前5条
1 肖九高;汪志和;;烟道气脱除和回收二氧化碳技术[A];第九届全国有色金属工业冶炼烟气治理专利技术推广及三废无害化处置研发技术研讨会论文集[C];2012年
2 杨邵鸿;兰志广;段光涛;姚文志;;北营焦化厂引进焦炉烟道废气余热利用项目可研[A];2013年全国冶金能源环保生产技术会论文集[C];2013年
3 朱鸿吉;;粉煤灰的综合利用和超细加工[A];第二届中国商品粉煤灰及磨细矿渣加工与应用技术交流大会论文集[C];2004年
4 肖建;罗林强;蔡文龙;;无除湿预处理法采样测定烟道气低浓度SO_2[A];中国环境科学学会2006年学术年会优秀论文集(下卷)[C];2006年
5 肖建;罗林强;蔡文龙;;无除湿预处理法采样测定烟道气低浓度SO_2[A];中国环境科学学会2006年学术年会优秀论文集(下卷)[C];2006年
相关重要报纸文章 前5条
1 ;焦炉烟道气净化工艺[N];世界金属导报;2014年
2 记者 李陈续 通讯员 李静;新技术点“污”成金[N];光明日报;2010年
3 陈斌;低分压二氧化碳回收新技术[N];中国石化报;2003年
4 本报记者 王翰林 实习生 岳瑞杰;环保降成本技术筑辉煌[N];科技日报;2003年
5 朱华东 郑文华 赵福齐 于宝会 高志军 于辉;焦炉烟道气余热的回收[N];世界金属导报;2011年
相关博士学位论文 前3条
1 刘清;胺改性工业级碳纳米管吸附分离烟道气中二氧化碳的研究[D];浙江大学;2015年
2 杜奎;利用烟道气培养能源微或小球藻和栅藻的研究[D];中国科学院研究生院(武汉植物园);2016年
3 刘振;燃煤电厂烟道气中二氧化碳吸附捕集过程的研究[D];华东理工大学;2012年
相关硕士学位论文 前10条
1 金萍萍;有机胺复合溶液吸收烟道气中CO_2反应过程研究[D];中国石油大学(华东);2014年
2 黄孟;微生物捕集烟道气中二氧化碳的试验研究[D];安徽理工大学;2012年
3 王昕;碱性吸附剂捕集烟道气二氧化碳技术研究[D];河北科技大学;2013年
4 方磊;烟道湿法喷雾预脱硫技术流场模拟及性能试验[D];华南理工大学;2015年
5 王峰;活性焦改性及其脱除烟道气中SO_2的研究[D];北京化工大学;2003年
6 杨珊荣;预测流速法在炼厂高温高压烟道烟尘浓度采样中的应用与研究[D];湘潭大学;2006年
7 李喜玉;可再生胺法烟道气脱硫吸收解吸一体化[D];华南理工大学;2011年
8 杨改;微藻固定实际烟道气中CO_2的研究[D];武汉科技大学;2011年
9 孟秀芳;焦炉烟道气余热利用技术研究[D];天津大学;2013年
10 袁文峰;膜接触器分离、回收烟道气中二氧化碳的研究[D];浙江大学;2004年
,本文编号:2010260
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2010260.html