基于空间光调制技术的高速高分辨飞秒激光加工

发布时间:2018-07-15 10:28
【摘要】:飞秒激光诱发双光子聚合是一种重要的微纳米加工手段,它被广泛应用于加工光学器件、生物传感器件和微流体器件等微纳米功能器件中。但是传统飞秒激光加工是基于单点逐点扫描加工,这种加工方法效率很低,难以广泛应用与实际生产中。为了提高加工效率,并行扫描加工方法被应用于加工阵列结构中,但这种多焦点并行扫描加工的方法只能加工阵列结构,并且对效率提升有限,尤其是在加工大尺度微纳米器件时,加工所消耗的时间依然过长。无掩膜图形化加工是一种可以有效提高飞秒激光双光子聚合效率的方法,为了实现无掩膜图形化加工,对光场的图形化是至关重要的步骤,本文基于空间光调制器对焦平面光场进行调制,实现无掩膜图形化加工。本文首先研究了空间光调制技术,介绍了相位型和振幅型空间光调制器,并针对相位型空间光调制器的调制原理采用琼斯矩阵法进行分析,然后介绍了多种计算全息算法,并基于实验的实际要求对算法做出了改进,为进一步实现图形化光场打下了基础。本文基于对结构光场的研究,提出一种快速加工管道结构的方法,该方法的核心是一种全新设计的环形菲涅尔透镜,这种透镜可以将平行入射光聚焦为均一的环形焦斑,并且焦斑的半径可以灵活变化,通过改变环形菲涅尔波带片的参数,我们甚至可以得到四边形、六边形和八边形的空心焦斑,实现100%填充率细胞支架的快速加工。为了实现任意结构的快速加工,我们对计算全息算法进行了改进。当采用传统计算全息算法生成图形化光场时,光场中存在大量斑点噪声,这些噪声会导致加工结构质量下降。我们提出一种多次曝光的方法,利用斑点噪声随机分布的特点,通过叠加多张全息图将斑点噪声平均化低于双光子加工的曝光阈值。通过这种多次曝光法,我们可以在数百毫秒内得到一个微米尺度的高质量微纳米结构。采用这种方法加工出的达曼光栅具有良好的光学性能,并且相对于传统逐点扫描加工方法可以节约95%的加工时间。但是,我们对于这个加工效率依然不满足,为了实现更高效率的加工,我们采用能量密度更高的放大级激光器作为光源,并且针对放大级激光器的性质,优化了一种新型计算全息算法,实现了任意微纳米结构的快速加工,每个结构的加工时间约为5毫秒,在如此快的加工效率下,加工至厘米尺度所需时间也不过10分钟,这已经与传统紫外光刻的加工时间相近,但却具有更高的灵活性、更高的分辨率并且无需掩膜。基于这种快速加工方法,我们在厘米级别的管道内集成了微捕获结构,实现微粒的捕获功能。加工出的微流体器件在测试中展示出极佳的性能,也证明了这种方法在快速加工微流体功能器件中的应用价值。
[Abstract]:Femtosecond laser-induced two-photon polymerization is an important method of micro-nano fabrication, which is widely used in fabrication of optical devices, biosensors, micro-fluid devices and other micro-nano functional devices. However, the traditional femtosecond laser processing is based on single point by point scanning, this method is very inefficient and difficult to be widely used and practical production. In order to improve machining efficiency, parallel scanning machining method is applied to machining array structure, but this multi-focus parallel scanning processing method can only process array structure, and improve efficiency is limited. Especially in the fabrication of large-scale micro-nano devices, the processing time is still too long. Non-mask graphic machining is a method that can effectively improve the efficiency of femtosecond laser two-photon polymerization. In this paper, the focal plane light field is modulated based on spatial light modulator. This paper first studies the spatial light modulation technology, introduces the phase type and amplitude type spatial light modulator, and analyzes the modulation principle of the phase type spatial light modulator by Jones matrix method, and then introduces a variety of computational holographic algorithms. The algorithm is improved based on the practical requirements of the experiment, which lays a foundation for the further realization of the graphical light field. Based on the study of the light field of the structure, this paper presents a method for rapid fabrication of pipeline structure. The core of the method is a new ring Fresnel lens, which can focus the parallel incident light into a uniform ring focal spot. The radius of the focal spot can be changed flexibly. By changing the parameters of the annular Fresnel band plate, we can even obtain the hollow focal spot of quadrilateral, hexagonal and octagonal, and realize the rapid processing of 100% filled cell scaffold. In order to realize the fast machining of arbitrary structure, we improve the algorithm of CGH. When the traditional CGH algorithm is used to generate the graphical light field, there are a lot of speckle noises in the light field, which will lead to the deterioration of the quality of the machined structure. We propose a method of multiple exposures to average speckle noise below the exposure threshold of two-photon processing by superposing multiple holograms to make use of the random distribution of speckle noise. Through this multiple exposure method, we can obtain a high quality microstructure in hundreds of milliseconds. The Darman grating fabricated by this method has good optical properties and can save 95% processing time compared with the traditional point-by-point scanning processing method. However, we are still not satisfied with this processing efficiency. In order to achieve higher efficiency, we use amplifying stage lasers with higher energy density as the light source, and aim at the nature of amplifying stage lasers. A new computational holographic algorithm is optimized to realize the rapid processing of arbitrary micro and nano structures. The processing time of each structure is about 5 milliseconds, and at such a rapid processing efficiency, the processing time to centimeter scale is only 10 minutes. This is similar to the processing time of traditional UV lithography, but has higher flexibility, higher resolution and no mask. Based on this fast machining method, we integrate the micro-trapping structure in the centimeter-level pipeline to realize the capture function of the particles. The fabricated microfluidic devices show excellent performance in testing, which also proves the application value of this method in the rapid fabrication of microfluidic functional devices.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN249

【相似文献】

相关期刊论文 前10条

1 ;我国高效率太瓦级飞秒激光装置建成[J];光机电信息;2000年11期

2 王雷剑;张海峰;张骥;徐永生;;飞秒激光系统的运行和改进[J];中国原子能科学研究院年报;2005年00期

3 王亚伟;刘莹;卜敏;王立峰;;飞秒激光与生物组织作用原理及其应用[J];激光与红外;2008年01期

4 云中客;;利用飞秒激光粉碎病毒[J];物理;2008年04期

5 狄建科;周明;杨海峰;戴娟;;飞秒激光与生物细胞作用机理及应用[J];激光生物学报;2008年02期

6 何芝君;;飞秒激光在半透明物质中的微爆破及应用[J];文山师范高等专科学校学报;2008年03期

7 杨海峰;周明;狄建科;赵恩兰;蔡兰;;飞秒激光活细胞微手术研究[J];光电子.激光;2009年04期

8 ;飞秒激光术=安全“新视界”?[J];发明与创新(综合版);2009年09期

9 王丽;邱建荣;;飞秒激光在生物学领域的应用[J];激光与光电子学进展;2010年01期

10 席炜;;更快、更高、更强——飞秒激光[J];现代物理知识;2010年02期

相关会议论文 前10条

1 魏志义;王兆华;田金荣;令维军;贾玉磊;张军;韩海年;王鹏;孙敬华;郑加安;张杰;聂玉昕;;飞秒激光功能扩展及精确控制[A];第六届全国光学前沿问题研讨会论文摘要集[C];2003年

2 曾绍群;;飞秒激光的声光扫描与神经活动观测[A];2006年全国强场激光物理会议论文集[C];2006年

3 徐楠;吴成印;吴志峰;梁青青;杨宏;龚旗煌;;分子的飞秒激光取向操纵[A];2006年全国强场激光物理会议论文集[C];2006年

4 蒋红兵;钟凤娇;龚旗煌;;分子取向对飞秒激光传输的影响[A];第八届全国光学前沿问题讨论会论文集[C];2009年

5 鲁欣;张U,

本文编号:2123770


资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2123770.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户28850***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com