DNA复制叉重启相关蛋白DnaT-ssDNA复合物结构和功能研究
[Abstract]:In the process of biological evolution, in order to meet the needs of different functions, a variety of protein patterns with different structural features and can be identified and combined with ssDNA have been developed to better accomplish the important mission they have been given. The classic domains of protein that can be combined with ssDNA, including OB folds, KH domains, RNA reco, have been found. Gnition motifs (RRMs), RecA-like domain, whirly domain, and recently reported DrpA domain, and so on. The high fidelity replication of the genetic material in the life body requires precise coordination and regulation of chromosomes, which is essential for the correct assembly of the replicas, and the initiator is a subcomposition of the replicator at the starting site of the replicator. The exact assembly is also regulated by a variety of mechanisms. The initiator consists of a number of proteins, such as a helicase, an initiating enzyme, and a number of associated auxiliary cohesions, which are required by the RNA primers for the replication of ssDNA as a template for the replication of the DNA. The replication of body and the restart of stagnant replication fork lay the foundation.
DnaT, one of the body proteins triggered by E. coli, plays an important role in reopening the stagnant replication fork. As a cohesive protein, DnaT is associated with the PriA-PriB-ssDNA three element complex and DnaB/C complex, which mediates a complete PriA dependent initiator assembly, and also has a mechanism for replicating the replication fork after the DNA is damaged. But in this study, we have analyzed the protein DnaT and single strand deoxyribonucleic acid fragment ssDN in this study. In this study, the structural biological study of the combination of DnaT protein with ssDNA and the interaction between DnaT protein and PriB is still blank. In this study, we analyzed the protein DnaT and single strand deoxyribonucleic acid fragment ssDN by means of X ray crystallography. Three crystal structures of the two binding states of the A complex, the resolution is 1.96A and 2.83A, and the crystal structure of the seleno protein crystal 2.08A. complex. The DnaT protein is coiled on ssDNA with a spiral fiber structure. The DnaT protein is combined with ssDNA in a base-inward mode, and each of the three helix bundle domains is combined with two bases. Oxygen nucleotides. By comparing with the sequence of homologous DnaT proteins, it is found that DnaT84-153 mainly identifies the base parts of ssDNA through conservative a2helix, and through the interaction of L3loop and the alpha 3helix stable protein with the phosphoric acid skeleton. At the same time, the DnaT protein uses a multi domain synergistic model to combine the substrate ssDNA to better complete the corresponding. The biological function of this protein folding pattern and the combination of the three spiral beam pattern domain with ssDNA has not been reported before. Therefore, the crystal structure model of the DnaT84-153-dT15ssDNA complex reveals a novel pattern of combining the three spiral beam pattern domain with ssDNA.
In view of the only observed DnaT84-153 fragments in the composite structure, the N end and C end of the DnaT protein were found to play an important role in improving the synergism of DnaT bound ssDNA by analyzing the binding ability of DnaT84-179, DnaT84-153 and full length DnaT protein on the ssDNA binding ability of different length fragments. SsDNA with different sequences has no sequence recognition specificity.
The results of substrate binding assay and electron microscopy negative staining showed that DnaT could form a rod like nucleoprotein fiber structure on its physiological substrate phiX-174ssDNA. We speculate that DnaT plays the role of scaffolding in the process of PriA- dependent initiator assembly and restarting the stagnant replication fork, providing a platform for subsequent biological processes. With the combination of the results and the relevant articles, we present a model for how the DnaT protein plays its functions during the initiation of PriA- dependent initiator assembly and replication forks.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:Q51
【共引文献】
相关期刊论文 前10条
1 欧植泽;陈晨;高云燕;曹璐;刘桂霞;李慧珍;;色胺修饰竹红菌素及其稀土离子配位聚合物与DNA相互作用研究[J];影像科学与光化学;2013年05期
2 陈海伟;杨静茹;;端粒和端粒酶与癌症发生和治疗的关系研究进展[J];赤峰学院学报(自然科学版);2014年19期
3 阳仲斌;李伟;金晨钟;吴娟;曾智;王艳;张雪娇;胡军和;;SCMC调控早期胚胎发育机制的研究进展[J];安徽农业科学;2015年13期
4 黄雪英;雷明;沈阳;张巍;刘艳丽;刘珂;赵浩斌;祁超;;采用X射线衍射解析人鸟嘌呤核苷酸解离刺激因子(RalGDS)Ras结合结构域的空间结构[J];分析化学;2015年06期
5 刘霖;胡大春;;端粒、端粒酶基因及其突变在肝癌发生发展中的研究进展[J];国际检验医学杂志;2015年12期
6 REN Jun;WANG Jue;WANG ZhiXin;WU JiaWei;;Structural and biochemical insights into the homotypic PB1-PB1 complex between PKCζ and p62[J];Science China(Life Sciences);2014年01期
7 MEI KunRong;JIN Zhe;REN FangLi;WANG YinYing;CHANG ZhiJie;WANG XinQuan;;Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS[J];Science China(Life Sciences);2014年01期
8 SONG Wen;HAN ZhiFu;SUN YaDong;CHAI JiJie;;Crystal structure of a plant leucine rich repeat protein with two island domains[J];Science China(Life Sciences);2014年01期
9 CHEN BaoEn;GAN JianHua;YANG CaiGuang;;The complex structures of ALKBH2 mutants cross-linked to dsDNA reveal the conformational swing of β-hairpin[J];Science China(Chemistry);2014年02期
10 闫娟枝;朱苗力;;1H-1,2,4-三唑-3,5-二羧酸锌的合成、表征及晶体结构研究[J];化学研究与应用;2013年12期
相关博士学位论文 前10条
1 王虹;真核生物AU-rich元件结合蛋白HuR和GAPDH3的结构功能研究[D];中国科学技术大学;2013年
2 罗晓秋;广西巴马地区壮族长寿家系口腔粘膜细胞端粒长度的研究[D];广西医科大学;2013年
3 王艳;中年女性体力活动与端粒体的相关性及“万步行”干预效果的研究[D];北京体育大学;2013年
4 张岭;IRAS基因敲除小鼠的构建及相互作用蛋白的筛选[D];中国人民解放军军事医学科学院;2013年
5 彭蓉;埃及伊蚊(Aedes aegypti)甾醇载体蛋白-2的生理功能及转录调控研究[D];华中师范大学;2013年
6 王宁;海洋微生物中变形菌视紫红质(Proteorhodopsin)结构和功能的研究[D];南京农业大学;2011年
7 江永亮;肺炎链球菌Ap_nA水解酶SapH和酵母Ap_4A磷酸化酶Apa2的结构酶学研究[D];中国科学技术大学;2012年
8 郭鹏超;酵母醌氧化还原酶Zta1和巯基氧化酶Erv1的结构与催化机理研究[D];中国科学技术大学;2012年
9 万小波;蛋白激酶小分子抑制剂选择性及其JAK2激酶调控机制的计算化学研究[D];北京协和医学院;2013年
10 张巍;人体内2种表观遗传修饰识别蛋白和2种支架蛋白的结构研究[D];华中师范大学;2013年
相关硕士学位论文 前10条
1 马登旭;水稻端粒酶RNA候选序列的克隆及特征研究[D];浙江理工大学;2013年
2 郑洁;玉米端粒酶RNA模板基因候选序列的克隆鉴定[D];浙江理工大学;2013年
3 韦敬航;人端粒酶RNA模板定点突变对肿瘤细胞Bcap-37的作用研究[D];浙江理工大学;2013年
4 任雳君;三联吡啶Pt(Ⅱ)配合物与四链体DNAs的相互作用及体外生物活性研究[D];山西大学;2013年
5 沈翔;极端嗜热菌金属蛋白酶TTHA1264,TTHA1265复合体的晶体结构研究[D];南京农业大学;2011年
6 高瑞娜;近红外BODIPY及菁染料的合成与性质研究[D];河南大学;2013年
7 杨明坤;端粒酶与大鼠脊髓损伤后髓内瘢痕相关性实验研究[D];新疆医科大学;2013年
8 徐君;皖江白鹅Smad9基因遗传特性及其与产蛋性能的相关性研究[D];安徽师范大学;2013年
9 王丹;一个新的TPP1相互作用蛋白OTUB1参与端粒长度调节的作用研究[D];中山大学;2013年
10 莫晓婷;玉米逆境相关转录因子的克隆与初步分析[D];中国农业科学院;2013年
,本文编号:2125570
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2125570.html