脉翅总目昆虫比较线粒体基因组学及系统发育研究

发布时间:2018-09-05 19:09
【摘要】:脉翅目、广翅目和蛇蛉目都是捕食性昆虫,共同组成脉翅总目。脉翅总目高级阶元的系统发育关系一直是研究的热点科学问题,前人提出了一些不同的假设,且争议较大。此外,脉翅总目不同科之间重要的生物学问题,比如它们的起源、分歧时间以及它们幼虫水生和陆生生活史之间的转化方向等仍然研究的很少。随着DNA测序技术和分析方法的飞速发展,线粒体基因组作为一个非常有效的分子标记在过去几十年间被广泛用于各个分类水平的系统发育研究,因为它的基因保守、普遍为标准的直系同源基因(母系遗传)、并且包含了很多其它分子片段没有的组学的特征,比如基因重排、插入和突变。为了更好的理解脉翅总目各个类群的起源和分化,本研究对脉翅总目昆虫线粒体基因组进行了较大规模的测序,测定了25种脉翅目、3种蛇蛉目和3种广翅目昆虫的线粒体基因组序列,获得了一些关键类群的线粒体基因组数据,如粉蛉科、泽蛉科、水蛉科、鳞蛉科、刺鳞蛉科、褐蛉科、栉角蛉科、旌蛉科、蝶蛉科、鱼蛉亚科、盲蛇蛉科等。在此基础上,利用比较基因组学和生物信息学等手段分析了脉翅总目昆虫线粒体基因组的特征与进化;并基于线粒体全基因组序列对脉翅总目昆虫目间,脉翅目、广翅目和蛇蛉目的系统发育关系进行了探讨。主要研究结果如下:(1)脉翅总目昆虫线粒体基因组基因的重叠区与特定基因具有相关性。脉翅总目昆虫线粒体基因组中,基因重叠区出现最稳定的区域位于ATP6和ATP8以及ND4与ND4L之间,大部分种类在这两个区域都存在7个碱基的基因重叠,分别为ATP8-ATP6:ATGATAA, ND4-ND4L: TTAACAT.(2)脉翅总目昆虫线粒体基因组tRNA"e-tRNAGln-tRNAMel基因簇之间的间隔在某些脉翅总目昆虫中非常大,tRNAIle-tRNAGlGln在褐蛉科Drepanepteryx phalaenoides达到106 bp,在蝶蛉科Balmes birmanus达到679 bp,在旌蛉科Chasmoptera huttii甚至达到883 bp。这些大的除控制区外大的间隔区出现的原因以及其功能还需要进一步的研究确定。(3)脉翅总目昆虫线粒体组基因的排列顺序比较保守。广翅目和蛇蛉目昆虫的基因排序与果蝇D. yakuba线粒体基因组基因的排列顺序相同,没有发生基因重排事件。而脉翅目昆虫中,除粉蛉科、泽蛉科、水蛉科和溪蛉科4个科之外,这些基因的排列顺序和果蝇D. yakuba的基因排列顺序不同,发生了基因重排事件,tRNACys从本来处于tRNATrp下游重排到tRNATrp上游。(4)脉翅总目昆虫线粒体基因组组成的异质性和类群分化的特异性造成了系统发育关系重建过程中的系统误差:在同质性模型下,无论是贝叶斯法、最大似然法还是最大简约法,所得到的系统发育关系都是粉蛉科处于脉翅目外面,脉翅目是并系。但是基于以前系统的形态学和分子证据都证明脉翅目是单系,并系的脉翅目是极不可能的。而在异质性模型下,贝叶斯法得到的系统发育树很好的证明了脉翅目的单系性,减少了线粒体基因组核苷酸组成异质性造成的误差。(5)脉翅总目、脉翅目、广翅目和蛇蛉目的单系性得到了很好的支持,脉翅目是广翅目的姐妹群。粉蛉科是脉翅目最基部的分支,在早二叠纪分化出来。泽蛉科和水蛉科的幼虫是水生的,并且是脉翅目比较早分化出来的类群。溪蛉科是脉翅总目昆虫除粉蛉科、泽蛉科和水蛉科昆虫之外所有其它科的姐妹群。脉翅目昆虫其它科的单系性得到了很好的支持,并且所有其它科(粉蛉科、水蛉科、泽蛉科、溪蛉科除外)的线粒体基因组基因顺序都发生了重排,tRNACys从本来处于tRNATrp下游重排到tRNATrp上游,这也是这个分支单系性的共同衍征。栉角蛉科是剩余所有科的姐妹群,螳蛉科、鳞蛉科和刺鳞蛉科也组成了一个单系群,分歧时间发生在三叠纪的早期到中期。我们的研究结果证明刺鳞蛉科是螳蛉科的姐妹群,然后共同组成鳞蛉科的姐妹群。草蛉科、褐蛉科、蛾蛉科和典型的蚁蛉亚目所有科共同组成一个单系群,分歧时间发生在三叠纪的中期到晚期,代表了幼虫头部骨片结构的一次大的变化。草蛉科被证明是褐蛉科的姐妹群,它们分歧时间在三叠纪的末期。蛾蛉科被证明是蚁蛉亚目的姐妹群。蚁蛉亚目的单系性得到了证明,蝶蛉科被认为是蚁蛉亚目所有其它科的姐妹群,接下来是细蛉科、旌蛉科,蚁蛉科是蝶角蛉科的姐妹群。我们的研究结果发现了蚁蛉科是并系,其中的原因或者蚁蛉科是否是单系需要选取两个科更多的代表种来进一步研究和探讨。
[Abstract]:The phylogenetic relationship of the higher order of the order Nematoptera has always been a hot scientific issue. Some different hypotheses have been proposed and controversial. In addition, important biological issues between different families of the order Nematoptera, such as their origin and classification, are also discussed. With the rapid development of DNA sequencing and analysis methods, the mitochondrial genome, as a very effective molecular marker, has been widely used in phylogenetic studies at various taxonomic levels in the past few decades because of its base. In order to better understand the origin and differentiation of the various groups of the order Pulsatilla, the mitochondrial genome of the order Pulsatilla was measured on a larger scale. The mitochondrial genomic sequences of 25 species of Neuroptera, 3 species of Serpentines and 3 species of insects of the order Panoptera were determined. The mitochondrial genomic data of some key groups were obtained, such as Melasidae, Euphorbiaceae, Hydraceae, Lepidopteridae, Euphorbiaceae, Euphorbiaceae, Bradychidae, Chlamydiaceae, Maggomyiaceae, Butterfly Maggoridae and Blind Maggoridae. The characteristics and evolution of the mitochondrial genome of the order Venetida were analyzed by means of comparative genomics and bioinformatics, and the phylogenetic relationships among the orders of Venetida, Neuroptera, Polyptera and Agkistrodon were discussed based on the whole mitochondrial genome sequences. In the mitochondrial genome of Pulsatilla, the most stable region of gene overlap is between ATP6 and ATP8, and ND4 and ND4L. In most species, there are seven base gene overlaps in these two regions, namely ATP8-ATP6: ATGATAA, ND4-ND4L: TTAACAT. (2) Pulse The interval between the mitochondrial genomic tRNA "e-tRNA Gln-tRNA Mel" gene clusters in pteridophytes is very large in some pteridophytes. The tRNAIle-tRNA Gln in Drepanepteryx phalaenoides reaches 10bp, in Balmes birmanus reaches 679 bp, and in Chaoptera smhuttii even reaches 883 bp. These large exceptions are controlled. (3) The sequence of mitochondrial genes in the order of ptera and serpents is conservative. The sequence of genes in the order of ptera and serpents is the same as that in the mitochondrial genome of D. yakuba of Drosophila, and there is no gene rearrangement. The sequence of these genes was different from that of D. yakuba in Drosophila, except for the four families of Trichogrammaceae, Euphorbiaceae, Hydraceae and Hydraceae. Gene rearrangement events occurred. tRNACys rearranged from downstream of tRNATrp to upstream of tRNATrp. (4) Heterogeneity and taxonomy of mitochondrial genome composition of vein-wing order insects. The specificity of chemistry results in systematic errors in the reconstruction of phylogenetic relationships: in homogeneous models, the phylogenetic relationships obtained by Bayesian method, maximum likelihood method and maximum reduction method are all extraneous to Neuroptera and paragenesis to Neuroptera. However, the morphological and molecular evidence based on previous systems proves that The phylogenetic tree obtained by Bayesian method proves the unilinearity of Neuroptera and reduces the errors caused by the heterogeneity of the nucleotide composition of mitochondrial genome. (5) The unilinearity of Neuroptera, Neuroptera, Polyptera and Serpentine has been obtained. Good support. Neuroptera is a sister group of the order Genoptera. The Family Melasporidae is the most basic branch of the Family Melasporidae, which was differentiated in the Early Permian. The larvae of the Family Melasporidae and Melasporidae are aquatic and are relatively early-differentiated groups of the Family Neuroptera. The Family Melasporidae is all other families of the family Melasporidae, Melasporidae, and Melasporidae. The monophyletic nature of other families of Neuroptera insects has been well supported, and the sequence of mitochondrial genomes of all other families (except Trichogrammaceae, Hydraceae, Euphorbiaceae and Myriaceae) has been rearranged. The rearrangement of tRNACys from the downstream of tRNATrp to the upstream of tRNATrp is also a common feature of the monophyletic nature of this branch. The family Chlamydae is a sister group of all the remaining families. The family Chlamydae, Lepidopteridae, and Echinopteridae also form a monophyletic group. The divergence takes place in the early to middle Triassic. Our results show that the family Echinopteridae is a sister group of the family Echinopteridae, and then forms a sister group of the family Echinopteridae. All families of the suborder Antoids form a monophyletic group. The divergence occurred in the middle to late Triassic, representing a major change in the skull structure of the larvae. The unilinearity has been proven to be the sister group of all other families of the suborder Mytilidae, followed by the family Mytilidae, the family Mytilidae, and the family Mytilidae, which are sister groups of the family Mytilidae. Our findings suggest that the family Mytilidae is parataxic, either because it is a single family or because the family Mytilidae needs to select more representative species from two families. Step research and discussion.
【学位授予单位】:中国农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:Q963


本文编号:2225201

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2225201.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户da23d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com