旋量玻色—爱因斯坦凝聚体中的拓扑激发研究
[Abstract]:The realization of Bose-Einstein condensate (BEC) has rapidly promoted the rapid development of ultra-cold atoms and cold molecular physics. Bec has unique macroscopic quantum coherence properties and artificial controllability. It not only makes it a basic experimental platform for testing quantum multi-body physics, but also provides a universal simulation platform for condensed matter calculation and nonlinear science. In recent years, with the application of new techniques and methods in experiments, the exploration of novel and topological quantum states in BEC has become a hot topic in international research. In this paper, we will mainly discuss the topological excitation in spinor Bose-Einstein condensates, including the mean field theory of spinor BEC, the symmetry classification of spinor order parametric manifolds. The basic theory of topological excitation and numerical study of topological excitation in spinor BEC. The first chapter mainly elaborates the related theory foundation of BEC. Firstly, the history of Bose-Einstein condensation is reviewed. Then the basic theories of ideal Bose-Einstein condensate and interacting Bose-Einstein condensate are briefly introduced. Finally, the theory of two-body scattering is introduced, the physical meaning of scattering length is discussed, and the common method of controlling scattering length is introduced, which is called Feshbach resonance. In chapter 2, the second quantization theory of spinor BEC with interaction is introduced, and the Hamiltonian of spinor BEC with spin 1, spin 2 and spin 3 is calculated, respectively. Then, by using the mean field theory, the Gross-Pitaevskii equations of spin 1 and spin 2 spinor BEC are obtained. The possible ground states of the consistent system of spin 1 and spin 2 are discussed, and the phase diagrams under certain parameters are given. In chapter 3, the concept of BEC's ordered parametric manifold is introduced by using the knowledge of group theory and differential manifold, and then the method of finding ground state by symmetry is introduced, and the possible ground states of spin 1 and spin 2 systems are classified by this method, respectively. Finally, the homotopy theory of topological classification is briefly introduced. By using the homotopy theory, the possible types of topological excitations in various spinor ordered parametric manifolds are analyzed, and two kinds of topological excitations, vortex and Skyrmion, are discussed in particular. In chapter 4, the effects of spin-orbit coupling on the system in two-component rotating BEC are discussed. It is found that spin-orbit coupling can induce hyperbolic Skyrmion. In different regions of interaction, the influence of spin-orbit coupling on Skyrmion is different. Then the three-component rotational BEC, of spin 1 is discussed and it is found that the spin-orbit coupling induces semi-skyrmion and three-vortex structures. Finally, it is discussed that the rotating BEC, of in-plane quadrupole magnetic field can lead to the generation of central Mermin-Ho vortex by the interaction of in-plane quadrupole magnetic field and rotation, and there are two topologies of hyperbolic meron and semi-skyrmion in the spin structure.
【学位授予单位】:中国科学院大学(中国科学院物理研究所)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O469
【相似文献】
相关期刊论文 前10条
1 王运汉;;旋量及其应用[J];海南大学学报(自然科学版);1985年04期
2 时万钟;;高维理论中的旋量[J];河南科学;1988年02期
3 王政之;五}攵葔徚獇a空晸和非}訶4方程式[J];山东大学学报(自然科学版);1964年04期
4 赵德龙;刚体力学的旋量分析方法[J];教学与研究;1986年00期
5 杨学恒,刘之愓;真空涨落与基本粒子构成[J];科学通报;1986年11期
6 葛旭初;电荷的二旋量理论[J];长沙水电师院学报(自然科学版);1986年01期
7 葛旭初;电子的纵向极化和粒子的电荷二旋量理论[J];长沙水电师院学报(自然科学版);1986年02期
8 葛旭初;;盖尔曼—西岛法则与粒子的电荷二旋量理论[J];衡阳师专学报(自然科学);1987年01期
9 何宜军,杨铨让;斜入射时孔径衍射旋量理论[J];光学学报;1992年10期
10 万明芳,邵常贵;有挠的旋量引力规范理论[J];湖北大学学报(自然科学版);1992年03期
相关会议论文 前1条
1 丁希仑;李可佳;徐坤;;基于旋量理论的弹性关节六腿机器人动力学分析[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
相关博士学位论文 前5条
1 陈庆诚;结合旋量理论的串联机器人运动特性分析及运动控制研究[D];浙江大学;2015年
2 陈华;基于雅克比旋量模型的三维公差分析方法研究及在发动机装配中的应用[D];上海交通大学;2015年
3 李甜甜;偶极旋量玻色—爱因斯坦凝聚体中的耦合自旋涡旋对[D];山西大学;2016年
4 刘静思;旋量玻色—爱因斯坦凝聚体中的拓扑激发研究[D];中国科学院大学(中国科学院物理研究所);2017年
5 朱琳;双旋量[D];苏州大学;2006年
相关硕士学位论文 前8条
1 卢宏琴;基于旋量理论的机器人运动学和动力学研究及其应用[D];南京航空航天大学;2007年
2 王科;基于旋量和李群李代数的SCARA工业机器人研究[D];浙江大学;2010年
3 邵新光;基于旋量理论的多自由度机构振动特性研究[D];燕山大学;2014年
4 孙婧昕;激光催化自旋为1的旋量BEC的磁畴形成研究[D];河南师范大学;2014年
5 潘国文;带有塞曼项的1-维旋量BEC方程组的解析解[D];兰州大学;2012年
6 李闯;二次塞曼效应下旋量玻色—爱因斯坦凝聚体动力学的研究[D];河北工业大学;2014年
7 徐爱婷;光晶格中旋量BEC的动力学性质[D];华东师范大学;2009年
8 呼艳生;超冷碱金属原子体系的磁性特征研究[D];太原理工大学;2015年
,本文编号:2251232
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2251232.html