基于第一性原理研究钎锌矿氮化物及其合金中的声子输运
[Abstract]:Wurtzite aluminum nitride (A1N), aluminum nitride (GaN), and aluminum nitride (InN) and its alloys are widely used in devices such as photovoltaic devices, solar cells and high-frequency transistors. In these device applications, temperature is an important factor affecting performance, reliability, and life. The thermal conductivity of the material determines its thermal conductivity, so the thermal conductivity of the material is an important part of the thermal management of the device. Although the thermal conductivity can be obtained by experimental measurement, the thermal conductivity of wurtzite AIN, GaN, InN and its alloys is still insufficient due to the limitation of the growth quality of the experimental samples, especially wurtzite InN. In the micro, the carrier of the crystal heat conduction is the sound, and the motion process is described by the acoustic subBoltzmann equation. The sound is scattered in the process of transport. According to the scattering sources, the scattering of the samples and the scattering of the samples are mainly divided into the lattice's own intrinsic scattering and the sample-related scattering. This sign-scattering determines the intrinsic thermal conductivity of the lattice and has been the difficult point of the study. Recently, this sign-scattering can be calculated accurately by the first principle. The thermal conductivity and dimensional effect of wurtzite AlN, GaN, InN and its alloys are studied in combination with the first principle calculation and the solution of the acoustic subBoltzmann equation. The results show that in the horizontal and vertical directions of wurtzite crystal lattice at room temperature, the thermal conductivity of A1N in natural isotopes is 301 Wm-1K-1 and 287Wm-1K-1, respectively. The thermal conductivity of GaN is 244 Wm-1K-1 and 277Wm-1K-1 respectively. The thermal conductivity of InN is 133Wmi1K-1 and 152Wm-1K-1, respectively. The calculation of the thermal conductivity at different temperatures shows that the anisotropy of the wurtzite AlN thermal conductivity is very small and can be regarded as an isotropic material, while the wurtzite GaN and the InN thermal conductivity have non-negligible anisotropy, especially at low temperature conditions. The anisotropy of the thermal conductivity coefficient is related to the square of the sound sub-velocity in different directions, and the anisotropy of the thermal conductivity coefficient is found to be mainly contributed by the low-frequency sound and mainly from the high-frequency transverse wave acoustic branch by calculating the distribution of the square velocity to the frequency. The cumulative function of the coefficient of thermal conductivity on the mean free path and the change of the thermal conductivity of the film with the thickness indicate that the size effect of wurtzite AlN, GaN and InN can last to several tens of microns. Based on the first principle, the related parameters and the virtual lattice model of wurtzite AlN, GaN and InN are calculated, and the changes of the thermal conductivity of wurtzite AlxGa1-xN, InxGa1-xN and InXAl1-xN with the alloy concentration are studied. it has been found that even a very small concentration of the alloy can greatly reduce the thermal conductivity. For example, after only 1% of Al or In atoms are doped in wurtzite GaN, the thermal conductivity is reduced by 60%. When the concentration of the alloy reaches a value of 0.2 to 0.8, the thermal conductivity is very small with the change of the alloy concentration. At room temperature, the minimum thermal conductivity of AlxGa1-xN is 18 Wm-1K-1 and 22Wm-1K-1, respectively, and the minimum thermal conductivity of InxGa1-xN is 22Wm-1K-1 and 27Wm-1K-1, respectively. The minimum thermal conductivity of InxGa1-xN is 8Wm-1K-1 and 10Wm-1K-1, respectively. the anisotropy is greater than the respective component material, which is due to the fact that the suppression of the low-frequency sound sub-band by the alloy is smaller than the high-frequency sound, resulting in an increase in the relative contribution of the anisotropic larger low-frequency sound. the size effect of the alloy can likewise continue to several tens of microns and the thermal conductivity will be reduced by half when the size is reduced to 100 nm. In the solution of the acoustic-son Boltzmann equation, the relaxation time approximation will underestimate the thermal conductivity, and the Callaway model is widely used as a modification. However, the accuracy of the Callaway model has not been tested. Based on the results of the first principle, the accuracy of the Callaway model is verified by using silicon, diamond and wurtzite AlN as the research object. The results show that the Callaway model can not guarantee the accurate prediction of the thermal conductivity. At the same time, through the calculation of the low-frequency sound sub-relaxation time, the relationship between the relaxation time and the frequency of the S-wave and the longitudinal-wave acoustic subU-scattering in the three lattices is 1/ 1/ 3, and the N-scattering process is in accordance with the relationship of 1/ 1 and 1/ 2.
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:O469
【相似文献】
中国期刊全文数据库 前10条
1 ;高频声子——一种新的研究工具[J];压电与声光;1972年05期
2 甘子钊;多声子隧道电流理论[J];北京大学学报(自然科学);1963年02期
3 白玉海,裴力伟;固体中高频声子的激励[J];物理;1985年07期
4 李中奇;声子气体及其热力学特征[J];株洲师范高等专科学校学报;2002年05期
5 陈序良;周敏;姚曼;Phillpot S R;;声子频率对同位素掺杂硅声子散射的影响[J];原子与分子物理学报;2008年06期
6 萨本豪;张锡珍;李祝霞;施义晋;;核场论中声子重整化的初步研究[J];高能物理与核物理;1980年03期
7 贾惟义,裴力伟;特超声声子的激光产生和荧光检测[J];物理学进展;1984年02期
8 白玉海;关于高频声子的近期研究进展[J];声学学报;1985年02期
9 何安明;生物大分子声子转移理论的初步研究[J];西南师范学院学报(自然科学版);1985年01期
10 白玉海;用于检测宽带声子的超导声子检测器[J];低温物理;1985年02期
中国重要会议论文全文数据库 前4条
1 姜迅东;李林;胡荣泽;;声子的量子理论[A];中国颗粒学会2006年年会暨海峡两岸颗粒技术研讨会论文集[C];2006年
2 江光佐;;在极性晶体的非对称双立体结中的光学声子模式[A];数学·物理·力学·高新技术研究进展(一九九六·第六期)——中国数学力学物理学高新技术交叉研究会第6届学术研讨会论文集[C];1996年
3 王艳锋;汪越胜;;含十字型孔的二维正方排列声子功能材料声学带隙的研究[A];北京力学会第17届学术年会论文集[C];2011年
4 朱夏明;吴惠桢;原子健;孔晋芳;沈文忠;;掺氮ZnO的多声子共振Raman散射光谱研究[A];第十五届全国光散射学术会议论文摘要集[C];2009年
中国重要报纸全文数据库 前5条
1 本报首席记者 张懿;用“声子学”引领热技术突破[N];文汇报;2012年
2 常丽君;《自然》介绍新兴声子学研究八个主题领域[N];科技日报;2013年
3 记者 冯卫东;新加坡推出声子计算机概念[N];科技日报;2007年
4 马晨;计算机可以依靠热能运行吗?[N];科技日报;2008年
5 沈英甲;让浪费的热能转换成电流[N];科技日报;2007年
中国博士学位论文全文数据库 前10条
1 杨爱超;声子晶体谐振器及其声能采集器研究[D];重庆大学;2015年
2 陈学坤;准一维杂化纳米结构声子输运的分子动力学研究[D];湖南大学;2016年
3 周五星;准一维纳米结构热电转换机理及其性能调控[D];湖南大学;2015年
4 孙红义;新型二维材料的声子输运与热机械性质的数值模拟[D];南京大学;2016年
5 张立军;高压下几种材料中声子及电子—声子耦合的第一性原理研究[D];吉林大学;2008年
6 李科敏;低维纳米结构中声学声子的输运性质研究[D];湖南大学;2009年
7 苟秉屏;声学声子辅助的硅基杂质电子自旋量子比特的量子控制[D];河北师范大学;2011年
8 聂六英;低维量子结构中的声学声子输运与热导性质研究[D];湖南大学;2007年
9 齐维开;二维胶体的相变及声子研究[D];兰州大学;2011年
10 王新军;半导体低维量子结构中电子态、声子态及其相互作用性质研究[D];湖南大学;2006年
中国硕士学位论文全文数据库 前10条
1 付佳琦;第一性原理研究纤锌矿结构AIN和InN的声子及热力学性质[D];内蒙古大学;2015年
2 张爱娟;低维系统中声子弛豫过程与热输运关系研究[D];扬州大学;2016年
3 潘贤群;半导体相干声学声子的超快产生与探测[D];华东师范大学;2013年
4 卢建夺;电子和声子在纳米器件中输运性质的研究[D];华中科技大学;2006年
5 徐丹峰;基于声子光栅调制的声子激光器性能分析[D];南京邮电大学;2014年
6 杨玉荣;超晶格GaAs/AlAs的热力学性质研究[D];湘潭大学;2006年
7 蒋英;金纳米棒的超快电子—声子耦合动力学研究[D];吉林大学;2010年
8 莫媛;准周期声子腔对半导体纳米线中声子输运影响的理论研究[D];湖南大学;2010年
9 吕苏娜;应用声子晶体滤波器改善声子激光器线宽的研究[D];南京邮电大学;2014年
10 赵亚妮;纳米体系中的电声子相互作用研究[D];陕西师范大学;2010年
,本文编号:2401352
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2401352.html