细菌Aquabacterium parvum B6的硝酸盐依赖型铁氧化代谢特性研究
[Abstract]:In view of the present situation of water pollution in China, this paper studies the metabolic characteristics of nitrate-dependent iron (NFFO) based on the theory of iron-oxide-bacteria (FOB). The NDFO metabolic characteristics and mechanism of the Aquabacteria species were identified for the first time by means of strain screening, efficiency investigation, analysis of metabolic mechanism, establishment and operation of the reactor and the like. In this study, a small genus of the genus Aquabacteriaum parvum B6 was screened by control test in different species of iron-oxidizing bacteria that were currently stored in the laboratory. The metabolic characteristics of Fe (II) and nitrate nitrogen were very significant in the process of anaerobic culture, and the number of cells increased significantly. The results of the anaerobic continuous culture show that under the condition of anaerobic culture, the strain B6 can achieve the ideal NFFO effect, and the number of the microorganisms in the culture bottle can reach the highest value, which is about 2.73 to 105 cell/ mL. The effect of different environmental factors on the NDF of the strain B6 is investigated. The results of comprehensive comparison show that the removal of NO-3-N by the strain B6 and the high oxidation efficiency of the strain B6 to the Fe (II) under the condition of the culture of the yeast extract or the sodium acetate as the carbon source, the glucose is the carbon source type which is the most favorable for the growth of the microorganism, and the NDF of the strain B6 is lower when the sodium citrate is used as a single carbon source. The effect of initial p H value, initial temperature and C/ N ratio on the NDF of the strain B6 was investigated by the response surface BBD method, and the initial p H value was found to have a greater effect on the nitrate nitrogen removal efficiency of the strain B6. The effect of the initial p H value and the C/ N ratio is greater than the initial temperature for the Fe (II) oxidation performance of the strain B6, and the NDFO performance of the strain B6 is optimized. The full-genome sequencing of strain B6 was performed using the Illumina Hi Seq 2000 sequencing technique. The results showed that the genomic size of the strain B6 was 4 592 999 bp and the GC content was about 65.3%. The gene can be divided into 27 groups according to the function:252 genes related to protein metabolism,236 genes related to carbohydrate metabolism,59 genes related to nitrogen metabolism, and 22 genes related to iron metabolism. It is known from the results of the gene sequence of the strain B6 that the strain B6 has the metabolic pathway of nitrate, nitrite and nitrous oxide and nitrous oxide in the anaerobic condition, the process and the Nar G, Nar H, NarJ, Nar I, q Nor, NnrS contained in the strain, The oxidation process of the iron (II) is related to the iron-sulfur cluster of the Nar subunit, and the oxidation process of the nitrite to the Fe (II) may be related to the scheme c of the Nir, while the dinitrogen monoxide is oxidized by the q-Nor to the Fe (II). the biological nitrogen removal and deironing reactor with the strain B6 as the main body is constructed, and the removal efficiency of the ammonia nitrogen, the nitrate nitrogen, the nitrite nitrogen, the Fe (II) and the total iron during the startup and the stable operation of the reactor is investigated, It is found that the removal rate of total nitrogen and total iron of the biological nitrogen removal and deironing reactor can reach 79.70% and 75.16%. The removal rate of nitrate nitrogen and Fe (II) in the anoxic zone of the reactor can reach 46.9% and 60.33%, respectively, and the nitrate nitrogen reduction rate can reach 0.07 mg of NO-3-N/ (L 路 h). The microbial community structure of the biological nitrogen removal and deironing reactor is relatively stable and diverse. The DO and C/ N values in the anoxic zone are beneficial to the growth of facultative anaerobic microorganisms, and the relative abundance of the genus Aquabacterium belonging to the strain B6 is 8.06%, and the NFO metabolism performance of the strain B6 is ensured. In addition, the bacillus (Bacillus), which is similar to the function of the strain B6, also has the dominant position in the anoxic zone, the relative abundance is 22.58%, and the strain B6 can not only maintain the advantages of the advantages, but also can strengthen the dominant position of the bacteria with the similar function in the system, So that the reaction system has higher ammonia nitrogen and total nitrogen treatment efficiency. The DO content and the C/ N ratio in the aerobic zone are beneficial to the step-by-step advantage of the microbial population with heterotrophic nitrification, aerobic denitrification and metabolic characteristics of the genus Corynebacterium, Chryseobacterium and Bacillus.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:X172
【相似文献】
相关期刊论文 前10条
1 王曼;李冬;梁瑜海;吴迪;;紫外分光光度法测定水中硝酸盐氮的试验研究[J];环境科学与技术;2011年S1期
2 邹丽丽;;原子吸收分光光度法测定水中硝酸盐氮[J];医学动物防制;2007年04期
3 王红卫;赵新鲜;张晶;;紫外分光光度计测定水中硝酸盐氮方法的探讨[J];水利技术监督;2007年04期
4 史东坡,李莉,雷成江;气相色谱法测定水中硝酸盐氮、亚硝酸盐氮的方法探讨[J];中国公共卫生;1999年09期
5 梅红婴;;紫外分光光度法测定硝酸盐氮适用情况的体会[J];广州环境科学;1996年01期
6 程美贞;紫外分光光度法测定水中硝酸盐氮方法改进[J];华北地质矿产杂志;1996年02期
7 许杨,徐月梅;蔬菜中硝酸盐氮的分析方法[J];山东环境;1994年06期
8 俞安复,,吴素华;用紫外分光光度法测定饮用水中硝酸盐氮的含量[J];计量与测试技术;1994年05期
9 李钦民;;镉汞齐还原法测定水中硝酸盐氮[J];军队卫生杂志;1987年03期
10 文帼英;;离子选择电极法测定硝酸盐氮,速度快,数据准确可靠[J];水资源保护;1987年04期
相关会议论文 前10条
1 倪杭娟;易润;;分析紫外分光光度法测定水中硝酸盐氮的条件因素[A];浙江省2005年给水排水论文集[C];2005年
2 闵奋力;左进城;张义;蔺庆伟;刘碧云;孙健;曾磊;贺锋;吴振斌;;苦草生物量和生理指标对附着藻和水体中不同浓度硝酸盐氮的响应[A];2017中国环境科学学会科学与技术年会论文集(第二卷)[C];2017年
3 叶婷;双陈冬;曲艳南;李爱民;;强碱阴离子交换树脂对尾水中硝酸盐氮的去除研究[A];第十三届全国水处理化学大会暨海峡两岸水处理化学研讨会摘要集-S1物理化学法[C];2016年
4 修瑞瑞;宋海亮;;改性硅藻土负载纳米零价铁对硝酸盐氮去除的研究[A];第十三届全国水处理化学大会暨海峡两岸水处理化学研讨会摘要集-S1物理化学法[C];2016年
5 滕金伯;;丹东地区地表水总氮与硝酸盐氮相关性分析[A];水与水技术(第9辑)[C];2019年
6 李铁龙;孙丽莉;金朝晖;安毅;李淑静;;纳米Fe/Cu-Pd/Cu的制备及其还原硝酸盐氮的研究[A];中国化学会第26届学术年会环境化学分会场论文集[C];2008年
7 席萍梅;刘浩;;离子色谱测定白石水库硝酸盐氮不确定度分析[A];水与水技术(第8辑)[C];2018年
8 刘静轶;李德生;郑炜晔;任可;刘元辉;彭帅;;化学催化法脱除模拟地表水中硝氮的研究[A];2017中国环境科学学会科学与技术年会论文集(第二卷)[C];2017年
9 刘存功;时文博;丁丹丹;尚俊生;刘运生;杨磊;;紫外分光光度法测定水体中硝酸盐氮的研究[A];中国水文科技新发展——2012中国水文学术讨论会论文集[C];2012年
10 廖文贵;;生物脱氮新技术[A];中国水污染防治技术装备论文集(第八期)[C];2002年
相关重要报纸文章 前1条
1 张茉楠;美债务依赖型经济难以为继[N];上海金融报;2010年
相关博士学位论文 前9条
1 张晓昕;细菌Aquabacterium parvum B6的硝酸盐依赖型铁氧化代谢特性研究[D];哈尔滨工业大学;2016年
2 贺鹏真;城市和海洋边界层大气硫酸盐和硝酸盐形成机制的过量~(17)O示踪[D];中国科学技术大学;2018年
3 程东会;北京城近郊区地下水硝酸盐氮和总硬度水文地球化学过程及数值模拟[D];中国地质大学(北京);2007年
4 徐伟锋;生物脱氮除磷ASM2D模拟及机理研究[D];同济大学;2006年
5 陈洪波;内聚物驱动生物脱氮除磷机理及优化控制研究[D];湖南大学;2015年
6 张美;烟草钙依赖型蛋白激酶生化及表达分析[D];武汉大学;2005年
7 谢宇轩;高氯酸盐及其与硝酸盐氮、氨氮混合污染的微生物降解研究[D];中国地质大学(北京);2014年
8 邓留杰;电化学生物流化床法处理模拟焦化废水[D];华南理工大学;2014年
9 张云霞;新型MBR-PBBR组合系统捷径生物脱氮研究[D];大连理工大学;2009年
相关硕士学位论文 前10条
1 任扬;Fe/AC微电解还原去除水中溶解性硝酸盐的研究[D];重庆大学;2018年
2 崔玉玮;基于电化学与生物膜耦合深度处理受污染地下水中含氮物质的研究[D];北京交通大学;2018年
3 赵爽;还原性铁粉处理低浓度硝酸盐废水的研究[D];华南理工大学;2018年
4 陈延明;醌基高分子功能材料制备及其催化调控生物反硝化特性研究[D];河北科技大学;2013年
5 姚福兵;钛-电化学间接还原硝酸盐及影响因素的机制研究[D];湖南大学;2017年
6 甄晓歌;物理化学因子影响下的低温地热水中硝酸盐变化机理研究[D];河南理工大学;2017年
7 王晶;金属锆/壳聚糖/膨润土复合物去除水体中氮磷的研究[D];西北农林科技大学;2017年
8 孙莹;脱氮硫杆菌去除地下水中硝酸盐氮的实验研究[D];合肥工业大学;2012年
9 王磊;地下水中硝酸盐氮污染源解析[D];中国地质大学(北京);2016年
10 段伟伟;电极生物膜法脱除水中硝酸盐氮效能的研究[D];扬州大学;2014年
本文编号:2496908
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2496908.html