LHC/ALICE实验向前区重夸克冷核效应的研究
发布时间:2020-12-24 17:27
自上世纪中期以来,随着高能加速器和探测器的快速发展,大量的新粒子被发现。按照其相互作用特性,它们可以分为:强子,轻子和传递相互作用的媒介子。强子直接参与强相互作用,如:质子,中子和π介子。轻子直接参与电磁和弱相互用,如:电子和μ子。随着碰撞能量的升高,我们发现,强子是具有内部结构的。根据标准模型,强子由夸克组成,它们携带色荷,夸克间的强相互作用是通过传递色荷完成的,其对应的传播子称为胶子。夸克和胶子又被统称为部分子。部分子之间的强相互作用由量子色动力学(QCD)来描述。与电磁相互作用(阿贝尔色相互作用)不同,强相互作用(非阿贝尔色相互作用)具有渐近自由的性质,也就是说,量子色动力学耦合常数依赖于相互作用的能量交换:相互作用部分子处于低能或者远距离时表现出强耦合;高能或者近距离时则表现出弱耦合特性。强耦合状态下,部分子被“囚禁”在强子内部而不呈现出自由的状态,即:色禁闭。此时,相关计算只能采用非微扰理论来进行,例如格点QCD(LQCD)。弱耦合状态下,部分子的热动能可能超过将其囚禁在强子中所需的束缚能,从而导致强子“融化”,退禁闭的自由部分子可能形成一种新的物质形态——夸克胶子等离子体(...
【文章来源】:华中师范大学湖北省 211工程院校 教育部直属院校
【文章页数】:316 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Quantum ChromoDynamics and Quark Gluon Plasma
1.1.1 The Standard Model and QCD
1.1.2 Lattice QCD calculations
1.2 Studying the QGP with heavy-ion collisions
1.2.1 Spacc-time evolution of heavy-ion colliding system
1.2.2 Signatures of the QGP from SPS to LHC
1.2.3 Cold and Hot Nuclear Matter Effects
1.3 Heavy-Flavours as probes of the QGP
1.3.1 Heavy-Flavour production in heavy-ion collisions
1.3.2 Studying heavy-flavours from their decay muons
2 The ALICE Experiment
2.1 ALICE Setup
2.2 Global Detectors
2.3 Central Barrel Detectors
2.4 The Forward muon spectrometer
2.4.1 The absorbers
2.4.2 Dipole Magnet
2.4.3 Tracking Stations
2.4.4 Trigger Stations
2.5 Future Upgrade of the Muon Spectrometer
2.5.1 Muon Tracking Upgrade
2.5.2 Muon Trigger Upgrade
2.5.3 Muon Forward Tracker(MFT)
2.6 ALICE Offine Framework
3 Data samples, Muon Selection Criteria and Acceptance×Effi-ciency Correction
3.1 Data Samples
3.1.1 Event Selection
3.1.2 Pile-up Effect
3.1.3 Normalization of Muon Triggers to Minimum Bias
3.2 Muon Track Selection
3.2.1 Track Selection
3.2.2 Detailed study of the p×DCA cut
3.3 Event Activity Classification
3.3.1 The Strategies
3.3.2 Multiplicity in p-Pb collisions
3.3.3 Event Activity Dependence in p-Pb Muon Triggered Events
3.4 Acceptance×Efficiency Correction
3.4.1 Aspects of correction efficiency
3.4.2 Strategy and Results
3.4.3 Systematic Uncertainty on the Efficiency
4 Subtraction of the background contribution of muons from charged pion and kaon decays
4.1 Experience Gained from Previous Analyses
4.1.1 Muon Sources
4.1.2 Background Estimation Strategies
4.2 Background Estimation in multiplicity integrated p-Pb Collisions Based on a Data-Driven Method
4.2.1 Summary of the Strategy
4.2.2 Input Charged Hadron Distributions
4.2.3 Rapidity Extrapolation
4.2.4 Conversion at Muon Level and Systematic Uncertainty
4.2.5 Cross-Checks and Discussion
4.3 Background within Individual Event Activity Classes in p-Pb Collisions
4.3.1 Challenges and Solutions
4.3.2 Charged Hadron Spectra with Different Estimators
4.3.3 Event Activity Determination
4.3.4 Deviation between Data and Monte-Carlo
4.3.5 Rapidity Extrapolation
4.3.6 Estimated Background and Systematic Uncertainty
4.3.7 Discussion
5 The pp Reference
5.1 pQCD-based Energy Sealing Procedure
5.1.1 The Strategy
5.1.2 Uncertainty Determination in Model
5.1.3 Strategy Validation for the Rapidity Shift
5.1.4 Energy Scaling Factor
5.2 The pp Rcference Estimated at (?)=5.02 TeV
5.2.1 Results Based on the Measurement at (?)=7 TeV
5.2.2 Extrapolation to Higher Transverse Momentum
5.3 Discussion
5.3.1 Combination of the Results From Different Energies
T"> 5.3.2 Alternative Strategy for the Reference at High pT
6 Muons from Heavy-Flavour Hadron Decays in p-Pb Collisions at (?)=5.02 TeV
6.1 Summary of the Analysis Strategy
6.2 Summary of the Systematic Uncertainty
6.2.1 Sources of Systematic Uncertainty
6.2.2 Error Propagation
6.3 Production Cross Section
6.4 Nuclear Modification Factor
6.4.1 Measurements in Multiplicity Integrated Collisions
6.4.2 Event Activity Dependence
6.4.3 Discussion
6.5 Forward-To-Backward Ratio
6.5.1 Measurements in Multiplicity Integrated Collisions
6.5.2 Event Activity Dependence
Conclusions
Bibliography
Appendix
Publication List
Presentation List
Acknowledgements
附件
本文编号:2936036
【文章来源】:华中师范大学湖北省 211工程院校 教育部直属院校
【文章页数】:316 页
【学位级别】:博士
【文章目录】:
摘要
Abstract
1 Introduction
1.1 Quantum ChromoDynamics and Quark Gluon Plasma
1.1.1 The Standard Model and QCD
1.1.2 Lattice QCD calculations
1.2 Studying the QGP with heavy-ion collisions
1.2.1 Spacc-time evolution of heavy-ion colliding system
1.2.2 Signatures of the QGP from SPS to LHC
1.2.3 Cold and Hot Nuclear Matter Effects
1.3 Heavy-Flavours as probes of the QGP
1.3.1 Heavy-Flavour production in heavy-ion collisions
1.3.2 Studying heavy-flavours from their decay muons
2 The ALICE Experiment
2.1 ALICE Setup
2.2 Global Detectors
2.3 Central Barrel Detectors
2.4 The Forward muon spectrometer
2.4.1 The absorbers
2.4.2 Dipole Magnet
2.4.3 Tracking Stations
2.4.4 Trigger Stations
2.5 Future Upgrade of the Muon Spectrometer
2.5.1 Muon Tracking Upgrade
2.5.2 Muon Trigger Upgrade
2.5.3 Muon Forward Tracker(MFT)
2.6 ALICE Offine Framework
3 Data samples, Muon Selection Criteria and Acceptance×Effi-ciency Correction
3.1 Data Samples
3.1.1 Event Selection
3.1.2 Pile-up Effect
3.1.3 Normalization of Muon Triggers to Minimum Bias
3.2 Muon Track Selection
3.2.1 Track Selection
3.2.2 Detailed study of the p×DCA cut
3.3 Event Activity Classification
3.3.1 The Strategies
3.3.2 Multiplicity in p-Pb collisions
3.3.3 Event Activity Dependence in p-Pb Muon Triggered Events
3.4 Acceptance×Efficiency Correction
3.4.1 Aspects of correction efficiency
3.4.2 Strategy and Results
3.4.3 Systematic Uncertainty on the Efficiency
4 Subtraction of the background contribution of muons from charged pion and kaon decays
4.1 Experience Gained from Previous Analyses
4.1.1 Muon Sources
4.1.2 Background Estimation Strategies
4.2 Background Estimation in multiplicity integrated p-Pb Collisions Based on a Data-Driven Method
4.2.1 Summary of the Strategy
4.2.2 Input Charged Hadron Distributions
4.2.3 Rapidity Extrapolation
4.2.4 Conversion at Muon Level and Systematic Uncertainty
4.2.5 Cross-Checks and Discussion
4.3 Background within Individual Event Activity Classes in p-Pb Collisions
4.3.1 Challenges and Solutions
4.3.2 Charged Hadron Spectra with Different Estimators
4.3.3 Event Activity Determination
4.3.4 Deviation between Data and Monte-Carlo
4.3.5 Rapidity Extrapolation
4.3.6 Estimated Background and Systematic Uncertainty
4.3.7 Discussion
5 The pp Reference
5.1 pQCD-based Energy Sealing Procedure
5.1.1 The Strategy
5.1.2 Uncertainty Determination in Model
5.1.3 Strategy Validation for the Rapidity Shift
5.1.4 Energy Scaling Factor
5.2 The pp Rcference Estimated at (?)=5.02 TeV
5.2.1 Results Based on the Measurement at (?)=7 TeV
5.2.2 Extrapolation to Higher Transverse Momentum
5.3 Discussion
5.3.1 Combination of the Results From Different Energies
T"> 5.3.2 Alternative Strategy for the Reference at High pT
6.1 Summary of the Analysis Strategy
6.2 Summary of the Systematic Uncertainty
6.2.1 Sources of Systematic Uncertainty
6.2.2 Error Propagation
6.3 Production Cross Section
6.4 Nuclear Modification Factor
6.4.1 Measurements in Multiplicity Integrated Collisions
6.4.2 Event Activity Dependence
6.4.3 Discussion
6.5 Forward-To-Backward Ratio
6.5.1 Measurements in Multiplicity Integrated Collisions
6.5.2 Event Activity Dependence
Conclusions
Bibliography
Appendix
Publication List
Presentation List
Acknowledgements
附件
本文编号:2936036
本文链接:https://www.wllwen.com/shoufeilunwen/jckxbs/2936036.html