基于开放数据的住宅用地集约利用评价
发布时间:2018-01-03 06:09
本文关键词:基于开放数据的住宅用地集约利用评价 出处:《中国地质大学(北京)》2017年博士论文 论文类型:学位论文
更多相关文章: 住宅用地 集约用地评价 开放数据 人工神经网络 北京市
【摘要】:住宅用地的合理布局与高效利用不仅影响城市的发展形态,还关系到人们的日常生活及居住环境。随着我国城镇化进程的加快,城市住宅用地需求量大幅度增加,如何集约利用住宅用地成为当前我国城市发展亟待解决的重要问题之一。本文以北京市住宅用地作为研究主体,在住宅用地功能分析的基础上提出了住宅用地服务承载力的概念,构建了住宅用地集约利用评价指标体系。通过网络爬虫及网络应用程序接口获取住宅小区及其周边服务设施空间和属性数据,利用二次空间叠加分析方法对住宅用地进行地块的识别和提取,并构建了住宅用地数据库。通过问卷调查的方式确定服务设施的服务半径,并利用核密度函数对住宅用地服务承载力进行计算。最后在九个地价等级划分的基础上构建BP神经网络,对北京市住宅用地进行集约利用评价,并根据评价结果提出住宅用地未来的潜力挖掘方案,为住宅用地政策制定提供建议。通过研究得出以下结论:(1)通过网络开放数据提取土地利用数据是一种便捷、快速、免费的方法,它可以有效地解决传统土地数据获取困难的问题,并结合海量的网络数据丰富土地利用数据的属性,从而挖掘土地利用数据中包含的更多信息。(2)住宅区周边服务设施的密度和距离与住宅区人口、容积率、占地面积以及地价有显著的相关性,住宅区位条件越好,承载的居住人口越多,其周边的服务设施越密集。反之,远离市中心的住宅区,服务设施不完善,承载的居住人口数也就越少。(3)目前北京市住宅用地整体利用状况合理,集约利用的住宅区占主体。不合理利用地块主要分布在各行政区交接处,以东北-西南方向为界形成明显的分区:西北方向过度利用住宅区域面积较大,东南方向住宅区以低度利用为主。各个行政区及不同地价等级区域之间的住宅用地集约度各有差异。(4)未来北京市住宅用地仍有很大的挖掘潜力,建议城市的东南方向为今后住宅建设的主要发展方向,并通过城市加密及城市扩展来进一步提升北京市住宅用地的集约度水平,促进住宅用地合理利用。
[Abstract]:Development of residential land rational distribution and efficient utilization not only affects the city, but also related to people's daily life and living environment. With the rapid process of urbanization in China, city residential land demand greatly increased, how the intensive use of residential land has become one of the important problems to be solved for the development of the city taking Beijing city residential land as the research subject, analyzing the land use function in the housing on the concept of residential land service capacity, construction of residential land intensive utilization evaluation index system. Access to residential areas and service facilities around the space and attribute data through the web crawler and web application interface, analysis the method of identification and extraction of residential land plots with two spatial overlay, and the construction of the residential land database. Through the questionnaire survey to determine the service Facilities and service radius, using the kernel density function of the residential land service capacity calculation. Finally build the BP neural network based on nine land classification, the Beijing city residential land intensive use evaluation, and according to the evaluation results of residential potential future mining plan, policy advice for residential use. The conclusions are as follows: (1) through the open web data extraction data of land use is a convenient, fast and free method, it can effectively solve the traditional land data acquisition problem, combined with the massive network data rich data attributes of land use, land use and mining more the information contained in the data. (2) the service facilities around the residential areas and residential population density and distance, volume rate, and covers an area of land has significant correlation, residential area A better living conditions, more population, its surrounding facilities more intensive. On the contrary, far away from the downtown residential area, service facilities are not perfect, the number of population bearing is also less. (3) the current Beijing city residential land use overall situation is reasonable, the intensive use of residential areas is not dominant. The rational use of land is mainly distributed in the administrative region at the handover, to the northeast and southwest border formed obvious Zoning: Northwest excessive use of residential area is large, the southeast direction of the residential area dominated by low use. Among the various administrative regions and different price level area of residential land intensive degree is different. (4 Beijing city) future residential land still has great potential, the southeast suggest that city is the main development direction in the future housing construction, and through the city encryption and expansion of the city to further enhance the Beijing city residential land The level of intensive degree will promote the rational use of residential land.
【学位授予单位】:中国地质大学(北京)
【学位级别】:博士
【学位授予年份】:2017
【分类号】:F299.23
【相似文献】
相关期刊论文 前10条
1 祝明霞;试析农村住宅用地和耕地间矛盾及其解决途径[J];高等函授学报(自然科学版);2002年06期
2 谢娜;张红;;基于谱分析法的中国住宅用地交易价格周期研究[J];中国土地科学;2008年06期
3 兰晓明;路振华;;住宅用地分析[J];中国城市经济;2011年30期
4 穗房宣;;广州市今年住宅用地供应量大幅度增加,确保住宅用地持续供应[J];房地产导刊;2013年12期
5 ;怎样申请住宅用地[J];山东地质;2003年02期
6 张俊梅;许v,
本文编号:1372692
本文链接:https://www.wllwen.com/shoufeilunwen/jjglbs/1372692.html