当前位置:主页 > 硕博论文 > 经管博士论文 >

基于新型多准则决策方法的云服务排名和选择研究

发布时间:2021-07-25 16:54
  当今通信和计算技术的迅速发展极大地改变了信息技术世界。这导致了一种新的计算范式的出现,即云计算。虽然云计算提供了巨大的机遇,但它也给组织管理者(OMs)和决策者(DMs)带来了各种挑战。OMs/DMs在转向云计算时面临的首要挑战是选择最符合其组织需求的适当云服务。这是一项对任何组织都具有深远影响的重大决定。在此之前,许多作者已经提出了云服务排名和选择(CSRS)问题的各种解决方案。然而,现有的CSRS解决方案存在一致性、可靠性、复杂性等问题。针对CSRS问题的错综复杂性和现有方法的不足,本文提出了创新的多准则决策(MCDM)解决方案(方法/框架),旨在帮助OMs/DMs在清晰和模糊的环境下做出明智的CSRS决策。本文对CSRS研究的突出贡献和创新点如下:首先,我们提出了一个新的云代理框架,即服务选择和推荐框架(SSRF)。与所有现有的方法/框架不同,SSRF涵盖了 CSRS问题的整个生命周期,最大限度地减少了对第三方的依赖,并提供了一种将体验质量(QoE)和服务质量(QoS)结合在CSRS决策中的机制。为了实现SSRF的服务评估/排序模块,我们提出了一种新的CSRS综合MCDM方法,旨... 

【文章来源】:大连理工大学辽宁省 211工程院校 985工程院校 教育部直属院校

【文章页数】:212 页

【学位级别】:博士

【文章目录】:
Abstract
摘要
List of Acronyms and Abbreviations
1 Introduction
    1.1 Research Background
    1.2 Dissertation Objective and Questions
    1.3 Methodological Approaches and Theoretical Framework
    1.4 Significance of the Research
        1.4.1 Theoretical Significance
        1.4.2 Practical/Managerial Significance
    1.5 Conspicuous and Novel Contributions
    1.6 Organization/Structure of the Dissertation
2 Review of the Literature
    2.1 Contextual Knowledge of Cloud Computing
        2.1.1 Characteristics of Cloud Computing
        2.1.2 Cloud Computing Service Models/Layers
        2.1.3 Cloud Computing Deployment Models
    2.2 MCDM
    2.3 Overview of the CSRS Research
        2.3.1 MCDM-based Approaches for CSRS
        2.3.2 MODM-based Approaches for CSRS
        2.3.3 Other Approaches for CSRS
    2.4 Key Limitations, Open Issues, and Challenges
    2.5 Summary
3 A Novel Integrated MCDM Approach for Precise CSRS
    3.1 Chapter Highlights
    3.2 Introduction
    3.3 Proposed Framework: SSRF
    3.4 Proposed Integrated MCDM Approach
    3.5 Pseudocode for Implementation Algorithms
    3.6 Case Study
        3.6.1 Criteria for Evaluation of Cloud Storage Services
        3.6.2 Initial Scrutinization of Services and Criteria
        3.6.3 Data Collection for OC3S
        3.6.4 OC3S
    3.7 Comprehensive Analysis
        3.7.1 Comparative Analysis
        3.7.2 Sensitivity Analysis
    3.8 Summary
4 MOSS: Towards Consensual CSRS
    4.1 Chapter Highlights
    4.2 Introduction
    4.3 Proposed Methodology:MOSS
        4.3.1 Prequel (Stage 1)
        4.3.2 Assessment (Stage 2)
        4.3.3 Ranking of NDSS (Stage 3)
        4.3.4 Integrated Ranking (Stage 4)
        4.3.5 Consolidation/ Selection (Stage 5)
    4.4 Implementation/Expository Application of MOSS
        4.4.1 Contextual Information
        4.4.2 Prequel (Prequalification of Cloud Services)
        4.4.3 Assessment of Criteria
        4.4.4 Ranking of NDSS
        4.4.5 Integrated Ranking
        4.4.6 Consolidation/Optimal CSRS
    4.5 Comprehensive Analysis
        4.5.1 Comparative Analysis
        4.5.2 Complexity Analysis
    4.6 Summary
5 C3SF: CSRS Through a Broader Consensus
    5.1 Chapter Highlights
    5.2 Introduction
    5.3 Preliminaries
        5.3.1 TOPSIS Method
        5.3.2 VIKOR Method
        5.3.3 WSM
        5.3.4 WASPAS method
        5.3.5 Aggregation Methods
    5.4 Proposed Framework:C3SF
        5.4.1 Requirement Elicitation
        5.4.2 Scrutinization
        5.4.3 Evaluation
        5.4.4 Ranking/Selection
    5.5 Developing a Broader Consensus
    5.6 C3SF Pseudocode
    5.7 Implementation of C3SF
        5.7.1 Case Study Background
        5.7.2 CSRS for Case Company using C3SF
        5.7.3 Developing a Broader Consensus on Service Ranking
    5.8 Analysis and Discussion
        5.8.1 Sensitivity Analysis
        5.8.2 Suitability for Group Decision Making
        5.8.3 Brief Discussion
    5.9 Summary
6. CSRS under a Fuzzy Environment
    6.1 Chapter Highlights
    6.2 Introduction
    6.3 Preliminary Concepts
        6.3.1 Basic Definitions
        6.3.2 TFN Arithmetic Operations
    6.4 The Proposed FLBWM
        6.4.1 Transformation Rules for Linguistic Expressions
        6.4.2 Fuzzy Reference Comparison
        6.4.3 Steps of the FLBWM
    6.5 The Architecture of the Proposed CSSaaS Framework
        6.5.1 Monitoring&Indexing
        6.5.2 Filtration&Recommendation
    6.6 RecServ:An FLBWM Based Algorithm for CSRS/Recommendation
    6.7 Illustrative Applications for CSRS
        6.7.1 Application 1: High CPU Compute-Optimized CSRS
        6.7.2 Application 2: IaaS Selection
    6.8 Comparative Analysis
        6.8.1 Comparative Analysis of FLBWM with BWM
        6.8.2 Rank Conformance Analysis
        6.8.3 Rank Correlation Analysis
    6.9 Comprehensive Analysis
        6.9.1 Sensitivity Analysis
        6.9.2 Suitability for Collaborative Decision Making
        6.9.3 Suitability under Changes in Alternatives
        6.9.4 Uncertainty Management
    6.10 Summary
7 Conclusions
    7.1 Achievements and Managerial Implications
    7.2 Summary of Innovations
    7.3 Future Research and Developments
References
Research Publications during Ph.D. Period
Appendix A C3SF Case Study Code (Chapter 5)
Appendix B FLBWM Code (Chapter 6)
Appendix C Supplementary Example and Comparative Analysis of FLBWM
Acknowledgement
Curriculum Vitae


【参考文献】:
期刊论文
[1]Qo S-Based Service Selection with Lightweight Description for Large-Scale Service-Oriented Internet of Things[J]. Chaocan Xiang,Panlong Yang,Xuangou Wu,Hong He,Shucheng Xiao.  Tsinghua Science and Technology. 2015(04)
[2]A Multi-dimensional Trust-aware Cloud Service Selection Mechanism Based on Evidential Reasoning Approach[J]. Wen-Juan Fan,Shan-Lin Yang,Harry Perros,Jun Pei.  International Journal of Automation and Computing. 2015(02)



本文编号:3302410

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/jjglbs/3302410.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4a9de***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com