基于卷积神经网络的肺炎类型影像判别
本文关键词:基于卷积神经网络的肺炎类型影像判别 出处:《哈尔滨理工大学》2017年硕士论文 论文类型:学位论文
更多相关文章: CT影像 深度学习 肺炎类型判别 卷积神经网络
【摘要】:近年来,医学图像处理已经成为计算机视觉领域的研究热点。肺炎影像类型判别目前主要依靠医生的经验,医院需要设置专门的科室和人员进行判断,这样费时费力,而且一些肺炎的CT影像极为近似,医生容易判别错误,造成误诊。通过实验发现传统的图像处理方法对肺炎分类识别率偏低。主要是人为选取图像特征,并不能精准的代表目标。深度学习是近几年来机器学习领域非常热门的方向,卷积神经网络作为深度学习的代表性网络,有自主学习特征的能力,且具有位移、缩放和扭曲不变性。可以通过大量有标签的肺炎类型数据训练卷积神经网络,自主学习肺炎类型的特征,对肺炎类型进行判别。卷积神经网络算法虽然有很多优点,但是也存在一些问题,容易产生过拟合现象,为此本文在不影响正确率的前提下,对卷积神经网络分类算法进行了改进。该算法结构由3个卷积层、3个亚采样层及1个完全连接层组成,并且对卷积层进行了Dropout方法和弹性梯度下降处理。实验证明,该方案较现在普遍研究的识别算法,如Adaboost算法和SVM算法具有更高的识别率和准确度,并且改进的卷积神经网络在训练数据时防止了过拟合现象的产生。改进后的算法由于需要多次迭代训练,训练时间较长,但用弹性梯度下降优化后,也相对减少了神经网络的收敛时间。
【学位授予单位】:哈尔滨理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R816.4;R563.1;TP183
【相似文献】
中国期刊全文数据库 前10条
1 戴康;王晓琼;;神经网络在药动学评价中的应用[J];医药导报;2007年09期
2 蔡云;;收敛非线性神经网络的稳定性[J];国外医学.生物医学工程分册;1991年01期
3 王继成,吕维雪;基于神经网络的心电数据压缩[J];生物医学工程学杂志;1993年03期
4 段新昱,林家瑞;神经网络在心电信号分析处理中的应用[J];国外医学.生物医学工程分册;1993年01期
5 Miller A S ,张永红;神经网络在医学信号处理方面的应用[J];国外医学.生物医学工程分册;1993年04期
6 王继成;吕维雪;;基于符号神经网络的心脏疾病自动诊断[J];北京生物医学工程;1993年03期
7 刘子皇;;胞神经与类胞神经网络的动力学范围的准确估计[J];中山大学研究生学刊(自然科学版);1995年03期
8 邹睿,欧阳楷,刘悦;神经网络中的微心理学——兼论人工神经网络框架[J];山东生物医学工程;1998年01期
9 邹凌云;王正志;黄教民;;基于位置特异性谱和输入加权神经网络的蛋白质亚细胞定位预测(英文)[J];遗传学报;2007年12期
10 成刚;吴小玲;夏杰;张炯;肖富男;崔燕南;周荃;刘永康;李珊;;基于神经网络的环孢素血药浓度预测[J];中国生物医学工程学报;2009年06期
中国重要会议论文全文数据库 前10条
1 徐春玉;;基于泛集的神经网络的混沌性[A];1996中国控制与决策学术年会论文集[C];1996年
2 周树德;王岩;孙增圻;孙富春;;量子神经网络[A];2003年中国智能自动化会议论文集(上册)[C];2003年
3 罗山;张琳;范文新;;基于神经网络和简单规划的识别融合算法[A];2009系统仿真技术及其应用学术会议论文集[C];2009年
4 郭爱克;马尽文;丁康;;序言(二)[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
5 钟义信;;知识论:神经网络的新机遇——纪念中国神经网络10周年[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
6 许进;保铮;;神经网络与图论[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
7 金龙;朱诗武;赵成志;陈宁;;数值预报产品的神经网络释用预报应用[A];1999年中国神经网络与信号处理学术会议论文集[C];1999年
8 田金亭;;神经网络在中学生创造力评估中的应用[A];第十二届全国心理学学术大会论文摘要集[C];2009年
9 唐墨;王科俊;;自发展神经网络的混沌特性研究[A];2009年中国智能自动化会议论文集(第七分册)[南京理工大学学报(增刊)][C];2009年
10 张广远;万强;曹海源;田方涛;;基于遗传算法优化神经网络的故障诊断方法研究[A];第十二届全国设备故障诊断学术会议论文集[C];2010年
中国重要报纸全文数据库 前10条
1 美国明尼苏达大学社会学博士 密西西比州立大学国家战略规划与分析研究中心资深助理研究员 陈心想;维护好创新的“神经网络硬件”[N];中国教师报;2014年
2 卢业忠;脑控电脑 惊世骇俗[N];计算机世界;2001年
3 葛一鸣 路边文;人工神经网络将大显身手[N];中国纺织报;2003年
4 中国科技大学计算机系 邢方亮;神经网络挑战人类大脑[N];计算机世界;2003年
5 记者 孙刚;“神经网络”:打开复杂工艺“黑箱”[N];解放日报;2007年
6 本报记者 刘霞;美用DNA制造出首个人造神经网络[N];科技日报;2011年
7 健康时报特约记者 张献怀;干细胞移植:修复受损的神经网络[N];健康时报;2006年
8 刘力;我半导体神经网络技术及应用研究达国际先进水平[N];中国电子报;2001年
9 ;神经网络和模糊逻辑[N];世界金属导报;2002年
10 邹丽梅 陈耀群;江苏科大神经网络应用研究通过鉴定[N];中国船舶报;2006年
中国博士学位论文全文数据库 前10条
1 杨旭华;神经网络及其在控制中的应用研究[D];浙江大学;2004年
2 李素芳;基于神经网络的无线通信算法研究[D];山东大学;2015年
3 石艳超;忆阻神经网络的混沌性及几类时滞神经网络的同步研究[D];电子科技大学;2014年
4 王新迎;基于随机映射神经网络的多元时间序列预测方法研究[D];大连理工大学;2015年
5 付爱民;极速学习机的训练残差、稳定性及泛化能力研究[D];中国农业大学;2015年
6 李辉;基于粒计算的神经网络及集成方法研究[D];中国矿业大学;2015年
7 王卫苹;复杂网络几类同步控制策略研究及稳定性分析[D];北京邮电大学;2015年
8 张海军;基于云计算的神经网络并行实现及其学习方法研究[D];华南理工大学;2015年
9 李艳晴;风速时间序列预测算法研究[D];北京科技大学;2016年
10 陈辉;多维超精密定位系统建模与控制关键技术研究[D];东南大学;2015年
中国硕士学位论文全文数据库 前10条
1 陈少吉;基于神经网络血压预测研究与系统实现[D];华南理工大学;2015年
2 张韬;几类时滞神经网络稳定性分析[D];渤海大学;2015年
3 邵雪莹;几类时滞不确定神经网络的稳定性分析[D];渤海大学;2015年
4 胡婷;改进QGA-BP模型及其在弥苴河总氮量预测中的应用[D];昆明理工大学;2015年
5 刘俊辉;基于数据清洗方法的河道水位预测研究[D];昆明理工大学;2015年
6 刘波;短期风电功率预测方法研究[D];南京信息工程大学;2015年
7 蔡邦宇;人脸识别中单次ERP时空特征分析及其快速检索的应用[D];浙江大学;2015年
8 郑川;垃圾评论检测算法的研究[D];西南交通大学;2015年
9 李菊;BP神经网络在房地产批量评估中的应用研究[D];昆明理工大学;2015年
10 马亮;降水点分类预测方法研究[D];中国地质大学(北京);2015年
,本文编号:1319096
本文链接:https://www.wllwen.com/shoufeilunwen/mpalunwen/1319096.html