聚6-羟基己酸的水解反应工艺研究
本文关键词:聚6-羟基己酸的水解反应工艺研究 出处:《青岛科技大学》2017年硕士论文 论文类型:学位论文
更多相关文章: 聚6-羟基己酸 水解反应 碱性条件 6-羟基己酸 络合萃取法
【摘要】:聚6-羟基己酸因其优良的生物降解性和生物相容性广泛应用于生物医药领域及组织工程的应用研究。聚6-羟基己酸的最终降解产物为二氧化碳和水,对人体无毒无害;其良好的药物通透性和力学性能,可作为药物释放载体材料,细胞、组织培养基架,完全可降解塑料手术缝合线等应用于体内。聚6-羟基己酸可与聚乙烯(PE)、聚丙烯(PP)、丙烯腈、丁二烯、苯乙烯三者的共聚物(ABS)、丙烯腈-苯乙烯共聚物(AS)、聚碳酸酯(PC)、聚氯乙烯(PVAC)、聚乙烯醇缩丁醛(PVB)、聚乙烯的醚类化合物(PVE)、尼龙(PA)、天然橡胶等高分子互容,可制备出多种性能优良的共聚物或共混物。因此,近年来聚6-羟基己酸及其共聚物的研究备受研究者的青睐。作为生物可降解材料的代表,聚6-羟基己酸的需求量也将越来越大。随着市场上对聚酯材料需求量的增多,废弃的聚酯材料也将会带来严重环境问题。尽管聚6-羟基己酸具有较好的生物可降解性,但是自然环境下的降解速度缓慢,也会造成资源的浪费和环境污染。对于如今资源枯竭、能源短缺、环境污染等社会现实问题,我们应该对废弃的聚6-羟基己酸材料进行合理的回收利用。化学回收法可以将聚6-羟基己酸解聚成低分子量产物,重新将其作为聚合单体再次使用,让聚酯材料发挥出它最大化的循环利用价值。本文探究了聚6-羟基己酸在氢氧化钠、碳酸钠、碳酸氢钠三种不同碱度条件下水解反应机理、优化了工艺条件。在整个水解反应系统中,选用乙二醇作溶剂。水解产物通过气相色谱-质谱联用仪(GC-MS2010)定性,气相色谱仪(GC2014C)定量。主要研究成果如下:1、氢氧化钠碱度大,OH-浓度越大,亲核基团[OH-]直接进攻聚6-羟基己酸的酯基结构,使酯基键发生断裂反应,生成小分子的6-羟基己酸;反应工艺条件缓和,在100℃的集热式恒温加热磁力搅拌器中既可完全解聚。2、碳酸钠、碳酸氢钠碱度小,OH-浓度越小,在反应初期亲核基团[-OCH2CH2OH]占主导地位,发生醇解反应的概率大,整个反应体系为醇解反应与水解反应相互促进进行;反应工艺条件苛刻,须在180℃密闭高压釜中完全解聚。3、探究出水解产物的分析方法:采用络合萃取法萃取出水溶液中产物,排除水分对气相色谱检测的干扰。萃取剂选用三辛胺,在油水相比为1:1、25℃温度条件下搅拌1h,水解产物的萃取率可达到97%以上。4、氢氧化钠最优化工艺条件:氢氧化钠/聚6-羟基己酸摩尔比为4.4:1,乙二醇/聚6-羟基己酸摩尔比为6.5:1,催化剂0.1g,反应温度100℃,反应时间2h条件下,聚6-羟基己酸解聚率达到96.06%,6-羟基己酸产率达到84.58%。5、碳酸钠最优化工艺条件:碳酸钠/聚6-羟基己酸的摩尔比为1.3:1、乙二醇和聚6-羟基己酸的摩尔比为6:1,催化剂0.1g,反应温度为180℃,反应时间为1h条件下,聚6-羟基己酸解聚率达到92.11%,6-羟基己酸产率达到78.13%。6、碳酸氢钠最优化工艺条件:碳酸氢钠/聚6-羟基己酸摩尔比为1.1:1,乙二醇/聚6-羟基己酸摩尔比为3:1,催化剂0.1g,反应温度180℃-190℃,反应时间1h条件下,聚6-羟基己酸解聚率达到98.53%,6-羟基己酸产率达到90.38%。7.在实验室研究的基础上,进行了聚6-羟基己酸在碳酸氢钠水溶液中水解工艺的中试放大流程设计,研究确定了工艺设计参数,形成了整套工艺的工艺流程图(PIDs)。8.利用危险与可操作性分析(HAZOP)方法,对工艺过程的危险因素进行原因、后果和控制措施分析,提出了工艺装置安全控制建议措施10条。
[Abstract]:Poly hydroxy 6- due to its excellent biodegradability and biocompatibility are widely used in the application of biomedicine and tissue engineering. The final degradation products of poly hydroxy 6- into carbon dioxide and water, non-toxic and harmless to the human body; its good permeability and mechanical properties, can be used as drug delivery carrier material, cell tissue culture, frame, totally biodegradable suture and in vivo applications. 6- and poly hydroxy polyethylene (PE), polypropylene (PP), acrylonitrile, butadiene, styrene copolymer of the three (ABS), acrylonitrile styrene copolymer (AS), polycarbonate (PC), polyvinyl chloride (PVAC). Polyvinyl butyral (PVB), ethers of polyethylene (PVE), nylon (PA), natural rubber and polymer compatibility, can produce a variety of excellent performance of the copolymers or blends. Therefore, in recent years, poly 6- hydroxy acid and its copolymer The study by researchers of all ages. As a representative of the biodegradable material, poly hydroxy 6- demand will be more and more big. With the increase of the amount of the market demand of polyester material, polyester waste will cause serious environmental problems. Although with good biodegradability of poly 6- hydroxy, but the degradation rate the natural environment is slow, will cause the waste of resources and environmental pollution. For now, the depletion of resources, energy shortages, environmental pollution and other social problems, we should from the poly 6- 3-hydroxyhexanoate material reasonable recycling. Can be poly hydroxy 6- depolymerized into low molecular weight products chemical recycling method. Again as the monomer used again, let play the polyester material recycling value of its maximum. This paper explores the poly hydroxy 6- in sodium hydroxide, sodium carbonate, carbonate The hydrolysis mechanism of sodium hydrogen three different alkalinity conditions, optimize the process conditions in the system. The hydrolysis reaction, using glycol as solvent. Hydrolysis products by gas chromatography-mass spectrometry (GC-MS2010) qualitative and quantitative gas chromatography (GC2014C). The main results are as follows: 1, sodium hydroxide alkalinity large, the greater the concentration of OH-, ester structure of the nucleophile [OH-] poly hydroxy 6- direct attack, the ester bond cleavage reaction, 6- 3-hydroxyhexanoate generation of small molecules; mild reaction conditions, the heat set 100 degrees constant temperature type magnetic force stirrer can completely depolymerized.2, sodium carbonate sodium bicarbonate alkalinity, small, OH- concentration is small, in the initial stage of the nucleophile [-OCH2CH2OH] dominates the probability of occurrence of the alcoholysis reaction, the reaction system for alcoholysis reaction and hydrolysis reaction and promote each other; reaction process conditions, must be 180 C sealed autoclave completely depolymerized.3, explore the analysis method of hydrolysis products: extract the product in aqueous solution by complex extraction method, to eliminate the interference of water on gas chromatography. Using three extractant octyl amine, in oil and water compared to the temperature of 1:1,25 DEG C under stirring 1H, extraction hydrolysis rate more than 97%.4, the optimum technical conditions: sodium hydroxide NaOH / poly hydroxy 6- molar ratio of 4.4:1, ethylene glycol / poly hydroxy 6- molar ratio of 6.5:1, catalyst 0.1g, reaction temperature 100 C, reaction time 2h, poly 6- hydroxy acid depolymerization rate has reached 96.06%, 6- hydroxy yield 84.58%.5, sodium carbonate the optimal process conditions: the molar ratio of sodium carbonate / poly 6- hydroxy is 1.3:1, ethylene glycol and poly hydroxy 6- molar ratio was 6:1, catalyst 0.1g, reaction temperature 180 C, reaction time is 1H, 6- poly hydroxy has The acid depolymerization rate reached 92.11%, 6- 3-hydroxyhexanoate yield reached 78.13%.6, the optimum technical conditions: sodium bicarbonate sodium bicarbonate / poly hydroxy 6- molar ratio of 1.1:1, ethylene glycol / poly hydroxy 6- molar ratio of 3:1, catalyst 0.1g, reaction temperature is 180 DEG -190 DEG C, the reaction time under the conditions of 1H, poly 6- 3-hydroxyhexanoate depolymerization rate reached 98.53%. 6- 3-hydroxyhexanoate yield 90.38%.7. on the basis of laboratory research, the poly hydroxy 6- in aqueous solution of sodium bicarbonate in the hydrolysis process of the scale-up process design, research to determine the design parameters of the process, forming a set of process flow diagram (PIDs) process hazard and operability analysis (HAZOP) method using.8. and risk factors on the process of the cause, consequence analysis and control measures, put forward process safety control measures 10.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ323.4;R318.08
【参考文献】
相关期刊论文 前10条
1 刘志德;张鑫;王咪咪;张东;;微波作用下碳酸盐对催化PET水解的研究[J];辽宁化工;2016年03期
2 李梦娟;黄艳红;余天石;陈世明;葛明桥;;乙二醇解聚废弃聚酯纤维制备偶氮分散染料[J];材料导报;2014年24期
3 张哲琦;牟德华;李艳;;优化GC检测2,4,6-三氯苯甲醚的萃取条件[J];食品工业科技;2014年24期
4 刘艳;;用三辛胺和磷酸三丁酯萃取、铵溶液反萃取钼的研究[J];湿法冶金;2014年03期
5 陈飞飞;任晓莉;刘青松;秦刚;杨锋;;锌铝混合氧化物催化降解废弃PET聚酯的研究[J];武汉纺织大学学报;2013年06期
6 王兴原;陈纪忠;;不同醇解聚聚对苯二甲酸乙二醇酯的反应特性[J];浙江大学学报(工学版);2013年05期
7 陈颍颍;沈剑;何潮洪;;三辛胺络合萃取分离一氯乙酸和二氯乙酸[J];化工学报;2013年02期
8 郑海建;余天石;葛明桥;;丙三醇降解废弃聚酯工艺条件的研究[J];材料导报;2012年S1期
9 王先锋;马宏瑞;王立璇;;废水中三辛胺对酸性染料的络合萃取[J];皮革科学与工程;2012年01期
10 余天石;俞捷;葛明桥;;丙三醇醇解聚酯产物的测试与表征[J];纺织学报;2012年01期
相关会议论文 前1条
1 贾旭宏;李军;金央;周X;罗建洪;王保明;;三辛胺萃取分离硝酸和磷酸的研究[A];中国化学会第28届学术年会第19分会场摘要集[C];2012年
相关硕士学位论文 前10条
1 钟玲;PET微波解聚及其非等温动力学研究[D];温州大学;2015年
2 王姣姣;ε-己内酯改性双季戊四醇六丙烯酸酯合成工艺的改进[D];郑州大学;2014年
3 殷海洪;EDTA合成母液中羟基乙酸的络合萃取分离[D];华东理工大学;2014年
4 郑海建;丙三醇解聚废弃聚酯制备纳米复合固化剂[D];江南大学;2013年
5 杨学群;聚乳酸和聚己内酯的水解反应研究[D];青岛科技大学;2013年
6 高静;聚对苯二甲酸丙二醇酯在亚临界水中的解聚研究[D];浙江工业大学;2012年
7 唐清华;微波辐射下PET水解过程中分子量的变化与解聚机理研究[D];温州大学;2012年
8 王媚娴;超/亚临界水中聚对苯二甲酸乙二醇酯解聚研究[D];浙江工业大学;2010年
9 贾延华;微波环境下催化解聚PET的动力学研究[D];温州大学;2010年
10 张现刚;超/亚临界水中聚碳酸酯/聚对苯二甲酸乙二醇酯催化解聚研究[D];浙江工业大学;2009年
,本文编号:1397438
本文链接:https://www.wllwen.com/shoufeilunwen/mpalunwen/1397438.html