面向癌症代谢系统的建模及应用研究
[Abstract]:Cancer is a special complex disease that has yet to be solved. Metabolism is the basis of survival of all living organisms. The phenotype of life is closely related to its metabolism. It is of great practical significance to understand the metabolism of cancer cells. In this paper, the metabolic system of different kinds of cancer cells is modeled by computer simulation, and the metabolic behavior of cancer cells is described qualitatively, which provides valuable clues for cancer research. Cancer cell metabolism is complex, so modeling and analysis of cancer cell metabolic system is slow. Due to the obvious phenotypic characteristics of cancer cells, we firmly believe that their internal metabolic state must have a certain regularity. Therefore, we try to simulate and analyze the metabolism of cancer cells on the computer by using the human genome network and multidimensional genomics data. The main features of this paper are as follows: (1) in view of the deficiency of the current cancer cell metabolic target and the lack of research on the pan-cancer metabolic layer, a method to study the universal characteristics of pan-cancer at the metabolic level is presented. We qualitatively predict significant metabolic changes in cancer cells based on a mathematical model that minimizes the inconsistency of changes in metabolic and genetic levels. This method has been widely used in many kinds of cancer cells, and we have successfully proved or predicted the common metabolic reaction, metabolic behavior and other characteristics of pan-cancer. (2) there are many feature extraction algorithms, there is no choice, and we rely heavily on the lack of data characteristics. Based on the metabolic behavior of cancer, a new feature variable extraction method is proposed, and a classification tree is constructed to identify cancer types. Taking the common response from pan-cancer level as a feature, the classification of cancer samples and normal samples obtained a good accuracy. Using the Boolean relation of cancer metabolic behavior to construct classification tree, we can preliminarily determine the cancer type of new samples. (3) to solve the problem that cancer heterogeneity is not considered in the current knockout work, a new type of cancer classification tree based on specific metabolic network is proposed. A method for predicting pan-cancer death and tumor suppressor genes. We reconstruct cancer-specific metabolic networks for each type of cancer and try to predict two types of cancer cells using computer simulation gene knockout experiments. By extending our method to multiple types of cancer, we can prove or predict the cancer specificity of a certain type of cancer, or two kinds of genes with lethal and suppressive effect on the pan-cancer level, which provide valuable clues for the related wet experiments.
【学位授予单位】:中国科学技术大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:R73-3
【相似文献】
相关期刊论文 前4条
1 徐晓燕;张莹;方慧生;;基因组水平上重构代谢网络的研究进展[J];药物生物技术;2012年02期
2 马红武,赵学明,迟万忠;应用Excel处理生化过程数据(Ⅰ)代谢通量分析及代谢网络优化[J];计算机与应用化学;1998年06期
3 杜志成;关鹏;黄德生;;基于约束建模法的结核菌H37Rv代谢网络分析[J];生物信息学;2014年01期
4 李毅;郑浩然;钮俊清;李恒;周宏;;VFA:一种可视化代谢网络建模工具[J];北京生物医学工程;2008年05期
相关会议论文 前2条
1 杨雪莲;唐雯;;几种重要工业微生物代谢网络的构建与分析[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
2 刘婷;刘立明;陈坚;;树干毕赤酵母基因组规模代谢网络模型的构建与运用[A];第四届全国微生物基因组学学术研讨会论文集[C];2012年
相关博士学位论文 前10条
1 黄伟;随机微分方程系统在信号传导通路和代谢网络噪声模型中的应用[D];复旦大学;2014年
2 蒋达;代谢网络若干计算问题研究[D];复旦大学;2009年
3 周婷婷;基于代谢网络的系统发育重建方法研究[D];国防科学技术大学;2009年
4 彭佳扬;代谢网络中功能模块挖掘和进化分析研究[D];中南大学;2011年
5 赵静;细胞代谢网络的结构、功能与进化研究[D];上海交通大学;2008年
6 赵建邦;基于代谢网络的功能模式发现及系统发生分析研究[D];西安电子科技大学;2011年
7 郝彤;基因组尺度人类代谢网络的亚细胞及组织定位[D];天津大学;2010年
8 卫海滨;C_3植物光合作用代谢网络动态的系统生物学分析[D];复旦大学;2009年
9 耿俊;带有酶系作用的生物系统的建模与过程优化[D];上海交通大学;2014年
10 王子楠;代谢网络调控提高拟南芥维生素C含量的研究[D];复旦大学;2009年
相关硕士学位论文 前10条
1 顾德清;基于基因组规模代谢网络模型快速预测代谢工程敲除策略[D];华东理工大学;2016年
2 周文卫;面向代谢网络分析的二代测序数据分析工具整合与应用研究[D];贵州师范大学;2016年
3 迟保f ;酿酒酵母基因组代谢网络模型的优化及其应用[D];西北农林科技大学;2016年
4 常风云;整合氨基酸与转录组数据的代谢网络模型分析与应用[D];华中师范大学;2016年
5 刘林;整合组学数据构建条件特异性代谢网络模型[D];上海交通大学;2015年
6 李培顺;基于代谢网络分析预测菌种基因敲除靶点方法的研究[D];天津大学;2015年
7 董风晴;凝结芽孢杆菌36D1全基因组代谢网络模型的构建和验证[D];华东理工大学;2017年
8 叶瑞;毕赤酵母全基因组代谢网络模型构建及其应用[D];华东理工大学;2017年
9 许扬;面向癌症代谢系统的建模及应用研究[D];中国科学技术大学;2017年
10 郝彤;枯草芽孢杆菌高质量代谢网络的初步构建[D];天津大学;2007年
,本文编号:2253739
本文链接:https://www.wllwen.com/shoufeilunwen/mpalunwen/2253739.html