马铃薯秧茎切割收集关键部件设计与试验研究
本文选题:马铃薯 切入点:秧茎切割部件 出处:《中国农业大学》2017年博士论文
【摘要】:针对马铃薯收获时因马铃薯秧茎导致喂入口的缠绕、壅堵、功率消耗大,及收获后田间滞留大量茎叶,影响种植下一季作物等问题,对马铃薯秧茎的形态结构和力学特性进行研究,设计马铃薯秧茎切割收集关键部件,一次完成田间马铃薯秧茎的切割、输送集箱等项作业。通过理论分析及试验研究,确定马铃薯秧茎切割收集关键部件的主要结构参数和作业参数,解决马铃薯秧茎的切割收集问题。主要研究内容及结论:1.马铃薯秧茎横截面结构及力学特性研究。应用扫描电镜从观察马铃薯秧茎横截面的细观结构入手,分析秧茎横截面的形态结构特征;在此基础上,通过秧茎切割试验分析秧茎的力学特性。2.对马铃薯秧茎切割过程进行分析,得到接触区的最大压缩量和最大接触压力;对秧茎进行整体分析,给出秧茎的挠曲线方程和秧茎在切割处沿水平方向的位移量;进行秧茎切割过程力学分析,得到在刀片和秧茎表面产生接触面积内的切向力。分析秧茎被切断后的运动情况,及使秧茎在输出装置末端能够自由抛离时,输送装置速度应满足的条件。3.模拟田间马铃薯秧茎切割工况,构建马铃薯秧茎切割试验台。在马铃薯秧茎切割试验台上进行秧茎切割试验,发现5cm留茬高度处、光刀、有支撑切割时秧茎的切割功耗和切割质量优于10cm留茬高度处、齿刀、无支撑切割;在不同切割转速下,切割部件总功耗随着切割转速的升高呈降低的趋势;在不同刀盘倾角下,切割部件总功耗随着刀盘倾角的增加而降低;当刀片与刀盘径向成一定安装角度时,切割部件总功耗降低;随着一次切割秧茎根数的增加,总的切割功耗也增加;随着秧茎含水率的降低,秧茎切割功耗也降低。建立秧茎切割功耗的回归方程,研究试验因素以及交互项对切割功耗的影响规律,发现当刀片夹角是0°时,随着切割刀盘转速和刀盘倾角的增加,切割功耗先降低后增加。确定各因素水平的最优组合并进行验证试验。4.进行马铃薯秧茎切割收集关键部件虚拟样机设计。通过进行马铃薯秧茎切割收集关键部件功能原理设计和结构设计,初步确定关键部件结构形式,及关键部件的几何尺寸参数和空间位置。5.进行秧茎切割关键工作部件刀盘和刀片的模态分析,发现一定的试验范围内无预应力状态下的固有频率和有预应力状态下的固有频率变化不大。在刀盘转速280r/min时,整个装置工作稳定,安全可靠。
[Abstract]:The potato harvest for potato vine to feed the entrance wound, blocking, power consumption, and post harvest field remain a large number of stems and leaves, the effect of planting the next crop and other issues, to study the morphological structure and mechanical properties of potato vine, potato vine cutting design collection of key parts, complete the cutting field a potato vine, conveying header and other operations. Through theoretical analysis and experimental study, determine the potato vine cutting the main structural parameters of the key components of the collection and operation parameters, cutting the potato vine collection problem. The main research contents and conclusions: 1. potato seedling stem cross section structure and mechanical properties using scanning electron microscope. From the observation of the potato vine cross section micro structure, analysis of morphological characteristics of stem section; on this basis, through the test analysis of vine vine cutting The mechanical characteristics of.2. were analyzed on potato vine cutting process, get the maximum amount of compression of the contact zone and the maximum contact pressure; analysis of total seedling stems, the displacement of the deflection curve equation and gives the vine vine in cutting along the horizontal direction; analysis of vine cutting mechanics, in the blade and vine surface contact area in tangential force. The movement analysis of seedling stems were cut off, and the vine can be free throw in the output device at the end of.3. conveyor speed should meet the simulated field of potato vine cutting conditions, construction of potato vine cutting test on test bench. Vine cutting test on potato vine cutting, found that 5cm left at the height of stubble, knife, supporting power cutting when the cutting seedling stems and cutting quality is better than 10cm, height of stubble cutter, support free cutting; in different cutting. The cutting speed, the total power consumption of components with the cutting speed increasing decreasing trend; in different angle cutter, cutting the total power consumption of components decreased with the increase of the inclination of the cutter head; when a certain radial installation angle of blade and cutter, cutting parts to reduce the total power consumption; increase with a cutting seedling stem root number the total cutting power consumption also increased with decreasing water content; seedling stem, stem cutting power consumption is reduced. The regression equation established vine cutting power consumption, test factors and interaction terms of the influence of cutting power consumption, when the blade angle is 0 degrees, with the increase of cutting speed of the cutter head and the cutter the inclination angle, the cutting power consumption decreased and then increased. The optimal combination of each factor level test of.4. potato vine cutting collection of key parts of virtual prototype design. Through the potato vine cutting collection key The design principle and design of function structure, identified key components of structure, modal analysis and the key parts of the geometric parameters and the spatial position of.5. stem cutting of key parts of cutter and blade, found that the natural frequency of the test within a certain range of non prestressed state and the change of natural frequency under the condition of large prestressed in the rotation speed of the cutter head 280r/min, the device is stable, safe and reliable.
【学位授予单位】:中国农业大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S225.71
【参考文献】
中国期刊全文数据库 前10条
1 魏元振;李其昀;尹成海;刘庆国;孙雪峰;曹树红;;喂入角对玉米茎秆切碎效果的试验分析[J];农机化研究;2016年06期
2 宋占华;宋华鲁;闫银发;李玉道;高天浩;李法德;;棉花秸秆往复式切割器动刀片优化设计[J];农业工程学报;2016年06期
3 郑美云;廖宇兰;王涛;杨怡;;木薯茎秆切割铺放装置设计与运动学分析[J];中国农机化学报;2016年03期
4 张留锋;薛忠;张劲;王名炜;;基于SolidWorks运动学仿真的圆盘式木薯茎秆切割器的研究与分析[J];中国农机化学报;2016年02期
5 童丹;韩黎明;;马铃薯茎叶中茄尼醇提取技术研究进展[J];畜牧兽医杂志;2016年01期
6 沈成;李显旺;张彬;田昆鹏;黄继承;陈巧敏;;苎麻茎秆台架切割试验与分析[J];农业工程学报;2016年01期
7 沈成;陈巧敏;周杨;张彬;田昆鹏;李显旺;;苎麻单茎秆切割试验与分析[J];中国农机化学报;2015年06期
8 张建;王淑红;王颖;;基于LS—dyna的油菜单圆盘开沟器切削土壤动态仿真[J];中国农机化学报;2015年06期
9 刘声春;孙丽娟;王明磊;;玉米茎秆模型建立及切割仿真研究[J];农业开发与装备;2015年10期
10 沈成;李显旺;田昆鹏;张彬;黄继承;陈巧敏;;苎麻茎秆力学模型的试验分析[J];农业工程学报;2015年20期
中国重要会议论文全文数据库 前1条
1 梁莉;郭玉明;;植物力学的研究进展与应用[A];2007年中国农业工程学会学术年会论文摘要集[C];2007年
中国重要报纸全文数据库 前1条
1 王润茁;;油菜马铃薯生产机械化开始提速[N];中国县域经济报;2012年
中国博士学位论文全文数据库 前4条
1 张智龙;梳脱式玉米摘穗机构设计与试验研究[D];中国农业大学;2015年
2 张涵;苜蓿茎秆剪切特性及切割参数的试验研究[D];中国农业大学;2015年
3 付作立;双圆盘式刈割压扁机切割系统研究[D];中国农业大学;2014年
4 孟海波;秸秆切割破碎与揉切机刀片耐用性试验研究[D];中国农业大学;2005年
中国硕士学位论文全文数据库 前8条
1 李晓栋;玉米穗茎联合收获机茎秆切割装置的研究[D];中国农业机械化科学研究院;2015年
2 何玉鹏;不同添加剂对马铃薯茎叶青贮特性和发酵品质的影响[D];甘肃农业大学;2015年
3 姚s,
本文编号:1677342
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/1677342.html