葡萄霜霉病生防放线菌PY-1鉴定及抑菌活性物质结构解析
本文选题:葡萄霜霉病 + 暗黑链霉菌 ; 参考:《沈阳农业大学》2016年博士论文
【摘要】:葡萄霜霉病是由葡萄生单轴霉Plasmopara viticola (Berk. Curtis) Berl. de Toni引起的真菌性病害,分布广泛且危害严重,是造成葡萄生产损失的主要原因之一。目前,化学药剂仍是防治葡萄霜霉病的主要措施,但大量、持续、单一品种化学药剂的使用导致3R问题日益突出。生物防治因其对环境友好、人畜安全及防治可持续性而受到广泛关注和高度重视。本研究目的是筛选对葡萄霜霉病具有防控效果的生防菌,并探究其生防机制,为葡萄霜霉病生防制剂的研制和应用提供有效菌株和技术指导。1.生防放线菌的分离与鉴定。对采自辽宁、云南和西藏等地葡萄园区的53份土壤样品样进行分离,共获得151株放线菌。采用平板筛选法以辣椒疫霉Plasmopara capsici为指示菌进行初筛,采用离体叶片法以葡萄霜霉病菌Plasmopara viticola为指示菌进行复筛,共获得28株对两种卵菌门真菌均有显著拮抗作用的放线菌,其中菌株PY-1的拮抗作用最强,其发酵液对葡萄霜霉病的抑菌率为91.11%。采用传统分类、化学分类与分子分类相结合的方法,鉴定PY-1菌株为暗黑链霉菌(Streptomyces atratus Higashide et al.), GenBank序列登录号为KJ627770.1。抑菌谱试验表明,菌株PY-1对葡萄灰霉病菌Botrytis cinerea、小麦根腐病菌Bipolaris sorokiniana、番茄晚疫病Phytophthora infestans、辣椒枯萎病菌Fusarium oxysporum、黄瓜炭疽病菌Colletotrichum orbiculare、番茄红粉病菌Trichothecium roseurn、茄子茎基腐病菌Rhizoctonia solani、高粱弯孢菌Curvularia caryopsida、小麦赤霉菌Fusarium graminearum均有不同程度的抑制作用。2.PY-1菌株发酵条件优化。通过单因子试验和正交试验优化生防放线菌PY-1液体发酵培养基的营养成分和发酵条件。确定最适培养基成分为玉米粉5%,葡萄糖0.5%,蛋白胨0.5%,氯化铵0.5%,氯化钠0.05%;最适发酵条件为在250mL三角瓶的装液量为90mL,接种量为5%,摇床转速为180r/min,培养温度28℃,初始培养液的酸碱度为pH7.0,发酵培养时间为5d。对比优化前后的培养基组分和培养条件,优化后的发酵液对葡萄霜霉病的抑菌率提高了8.35%。3.PY-1菌株抑菌活性物质稳定性分析。生防放线菌PY-1抑菌活性物质为胞外次级代谢产物。发酵滤液抑菌活性稳定性试验结果表明:温度低于65℃时抑菌活性稳定;对40W日光灯稳定,在太阳光下照射72h后,抑菌活性开始下降;pH6-10环境下稳定,强酸或强碱均影响其发酵滤液的抑菌活性;4℃下保存6个月抑菌活性无明显变化,常温下保存4个月后,抑菌活性开始下降;蛋白酶溶液对其抑菌活性无明显影响;金属离子导致抑菌活性下降。4.PY-1菌株抑菌机理及田间防效评价。生防放线菌PY-1发酵滤液能够导致葡萄霜霉病菌孢子囊和孢子囊梗出现褶皱、破裂和畸形,进而丧失侵染功能。放线菌PY-1代谢产物中包含几丁质酶、蛋白酶、嗜铁素、ACC脱氨酶、HCN、IAA,不含纤维素酶。田间防效试验表明,生防放线菌PY-1发酵原液对葡萄霜霉病的田间中期防效可达到90%以上,末期防效达86%以上,比52.5%抑快净2000倍液略低,但明显高于58%甲霜锰锌1000倍液;PY-1菌株发酵液稀释700倍液对葡萄霜霉病的末期防效与甲霜锰锌1000倍液防效相当。5.PY-1菌株抑菌活性物质的分离纯化及结构鉴定。PY-1发酵虑液经二氯甲烷萃取、薄层层析、硅胶柱层析、葡聚糖凝胶柱层析和HPLC进行分离纯化,获得两种对葡萄霜霉病菌具有很强抑制活性的化合物纯品PY1-7-1和PY1-7-2。抑菌试验结果显示,不同稀释浓度的PY1-7-1和PY1-7-2 (10-2mg·mL-1、10-4mg·mL-1、10-6mg·mL-1)对葡萄霜霉病菌的抑菌率分别为92.59%、86.30%、64.81%和97.04%、91.85%、84.07%。采用ESI-MS、1HNMR、13CNMR波谱分析技术对活性组分进行结构解析,确定PY1-7-1化合物分子量为339,分子式为C17H25NO6,化学名称为5-Acetoxycycloheximide; PY1-7-2化合物分子量为281,分子式为C15H23NO4,化学名称为Cycloheximide。
[Abstract]:Grape downy mildew is a fungal disease caused by Plasmopara viticola (Berk. Curtis) Berl. de Toni of Vitis Vitis, which is widely distributed and seriously harmful. It is one of the main causes for the loss of grape production. At present, chemical agents are still the main measures to prevent downy mildew of grape, but a large number, continuous, single variety chemical agents are made. The problem of 3R is becoming more and more prominent. Biological control is widely concerned and highly valued for its environmental friendliness, human and animal safety and the sustainability of prevention and control. The purpose of this study is to screen the biocontrol bacteria that have the control effect on the grape downy mildew, and to explore the biological control mechanism to provide effective strains for the development and application of the biocontrol preparations for the grape frosting disease. And technical guidance for isolation and identification of.1. actinomycetes. 151 actinomycetes were isolated from 53 soil sample samples collected from Liaoning, Yunnan and Tibet and other places, and 151 strains of actinomycetes were obtained by the plate screening method, and the isolated leaf blade method was used for the grape downy mildew fungus Plasmopara vitic. Ola was used to resieve the indicative bacteria, and 28 actinomycetes had a significant antagonistic effect on two species of actinomycetes. The antagonistic effect of strain PY-1 was the strongest. The bacteriostasis rate of the fermentation broth on downy mildew was 91.11%. by traditional classification, chemical classification and molecular classification, and PY-1 strain was identified as Streptomyces dark Streptomyces (Strept) Omyces atratus Higashide et al.), the sequence number of GenBank sequence is KJ627770.1. bacteriostasis test, which shows that strain PY-1 pairs Botrytis cinerea, Bipolaris sorokiniana of wheat root rot fungus, tomato late blight, pepper Fusarium wilt pathogen and cucumber anthrax pathogen, Tomato red powder bacteria Trichothecium roseurn, eggplant stem base rot pathogen Rhizoctonia solani, sorghum Curvularia Curvularia caryopsida, wheat scab Fusarium graminearum have different inhibition effect on the fermentation conditions of.2.PY-1 strain. Through single factor test and orthogonal test, the liquid fermentation medium of actinomycetes PY-1 is optimized. The optimum medium is 5% of corn flour, 0.5% of glucose, 0.5% of peptone, 0.5% of ammonium chloride and 0.05% of sodium chloride. The optimum fermentation condition is that the liquid quantity of 250mL triangle bottle is 90mL, the inoculation amount is 5%, the rotational speed of the rocking bed is 180r/min, the culture temperature is 28, the acidity alkalinity of the initial culture is pH7.0. Between the culture medium and the culture conditions of 5d. before and after the optimization, the bacteriostasis rate of the optimized fermentation broth to downy mildew was enhanced by the analysis of the stability of the antibacterial active substance of the 8.35%.3.PY-1 strain. The antifungal activity of the biocontrol actinomycete PY-1 was the extracellular secondary metabolite. The stability test results of the fermentation filtrate showed that the temperature was temperature The bacteriostasis activity was stable at less than 65 C; the bacteriostatic activity of 40W fluorescent lamp was stable and 72h was irradiated under the sun light. The bacteriostasis activity began to decrease in the sun light. The bacteriostatic activity of the filtrate was affected by the pH6-10 environment, strong acid or strong alkali all affected the bacteriostasis activity of the fermentation filtrate; the bacteriostasis activity was not obviously changed at 4 centigrade for 6 months, and the bacteriostasis activity began to decline after 4 months of preservation at normal temperature; protease was reduced. The solution has no obvious effect on its bacteriostasis activity; metal ions lead to bacteriostasis activity to decrease the bacteriostasis mechanism of.4.PY-1 strain and field efficacy evaluation. PY-1 fermentation filtrate of biocontrol actinomycetes can cause folds, rupture and malformation of spores and spore sac of downy mildew strain of grape downy mildew, and then lose the infection function. The PY-1 metabolites of actinomycetes contain several The results of field control test showed that the field control effect of the biocontrol actinomycetes PY-1 fermentation broth could reach more than 90% in the middle stage of Grape Downy Mildew in the field, and the end effect reached more than 86% at the end of the stage, and was slightly lower than that of 52.5%, but was significantly higher than that of 58% methodezine and zinc 1000 times, and PY-1 strain was produced by PY-1 strain. The solution of 700 times dilution of yeast solution to the end stage of grape downy mildew and the antifungal activity of 1000 times liquid of methyl cream and zinc is equivalent to the isolation and purification of bacteriostasis of.5.PY-1 strain and its structure identification..PY-1 was separated and purified by dichloromethane, thin layer chromatography, silica gel column chromatography, dextran gel column chromatography and HPLC, and two kinds of grape cream were obtained. The results of bacteriostasis test of pure products with strong inhibitory activity of bacteria PY1-7-1 and PY1-7-2. showed that the bacteriostasis rates of PY1-7-1 and PY1-7-2 (10-2mg. ML-1,10-4mg. ML-1,10-6mg. ML-1) at different diluted concentrations were 92.59%, 86.30%, 64.81% and 97.04%, 91.85%, 84.07%. adopted ESI-MS, 1HNMR, 13CNMR spectrum analysis technique The molecular weight of the PY1-7-1 compound is 339, the molecular formula is C17H25NO6, the chemical name is 5-Acetoxycycloheximide, the molecular weight of the PY1-7-2 compound is 281, the molecular formula is C15H23NO4, and the chemical name is Cycloheximide..
【学位授予单位】:沈阳农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S476;S436.631
【相似文献】
相关期刊论文 前10条
1 郭缠俊,雷虹,赵辉;78%科博可湿性粉剂防治葡萄霜霉病试验报告[J];西北园艺;2000年05期
2 杨成法;;葡萄霜霉病暴发的原因及防治对策[J];果树实用技术与信息;2001年04期
3 张萍,史兰琴;葡萄霜霉病的防治[J];宁夏农林科技;2001年02期
4 王春玉,史永森;葡萄霜霉病的发生与防治[J];河南农业;2001年07期
5 吴家云;葡萄霜霉病的发生与防治[J];安徽农业;2002年08期
6 冷德训,王吉田,秦韶梅,刘青兰,迟美芳,姜好胜;科博等对葡萄霜霉病的防治效果[J];北方果树;2002年03期
7 ;新西兰发明一种菌可防治葡萄霜霉病[J];保鲜与加工;2002年01期
8 李庆国;葡萄霜霉病的防治[J];河北果树;2002年04期
9 邵明灿,盛宝龙,蔺经,熊如意,芮东明;宝力克防治葡萄霜霉病试验[J];落叶果树;2002年02期
10 朱明华,张夕林;稻后安防治葡萄霜霉病试验[J];现代农药;2002年05期
相关会议论文 前7条
1 王国英;贺普超;;葡萄霜霉病抗性鉴定方法的研究[A];葡萄研究论文选集[C];2003年
2 董丽梅;;宾川红提葡萄霜霉病的发生规律及防治措施[A];2012年云南农业环境保护协会论文集[C];2012年
3 敖贤斌;李丽;张艳茹;常立民;;波尔多液和“树衣”混用提高葡萄霜霉病防效的研究[A];河北省果树学会第十三届学术年会论文集[C];1995年
4 李华;王华;;欧亚种葡萄霜霉病和白粉病的抗性关系[A];中国园艺学会首届青年学术讨论会论文集[C];1994年
5 王国珍;樊仲庆;麻冬梅;张小波;郭惠萍;;贺兰山东麓酿酒葡萄霜霉病流行规律及预测预报技术的研究[A];中国植物病理学会2004年学术年会论文集[C];2004年
6 李红阳;陈志谊;周步海;周加春;杨华;张俊喜;;葡萄霜霉病无公害防治药剂筛选及控害技术研究[A];植保科技创新与病虫防控专业化——中国植物保护学会2011年学术年会论文集[C];2011年
7 朱明华;;28%稻后安使用技术研究[A];2003’华东植物病理学术研讨会暨江苏省植物病理学会第十次会员代表大会论文集[C];2003年
相关重要报纸文章 前10条
1 徐庆源;巧治葡萄霜霉病[N];山西科技报;2002年
2 河北省农林科学院昌黎果树研究所 于丽辰 许长新;地面覆膜可抑制葡萄霜霉病[N];河北科技报;2012年
3 公秀峰;巧防葡萄霜霉病[N];中华合作时报;2003年
4 徐世彦;葡萄霜霉病的症状和防治[N];陕西科技报;2004年
5 黄家南;葡萄霜霉病的防治[N];云南科技报;2005年
6 孟德辉;如何防治葡萄霜霉病[N];河南科技报;2007年
7 农十二师农技推广站 李涛 三坪农场 荀军;葡萄霜霉病的防治[N];新疆科技报(汉);2006年
8 记者 陈星;预防葡萄霜霉病贵在加强管理[N];新疆科技报(汉);2007年
9 成安县林业局 贾晓华;葡萄霜霉病的综合防治[N];河北科技报;2012年
10 任建华;葡萄霜霉病的防治[N];陕西科技报;2003年
相关博士学位论文 前3条
1 梁春浩;葡萄霜霉病生防放线菌PY-1鉴定及抑菌活性物质结构解析[D];沈阳农业大学;2016年
2 臧超群;葡萄霜霉病生防细菌SY286及控病机理研究[D];沈阳农业大学;2014年
3 尹玲;葡萄霜霉病抗性基因MrRPV1结构域及霜霉菌效应分子功能研究[D];中国农业大学;2015年
相关硕士学位论文 前10条
1 金恭玺;新疆地区葡萄霜霉病的发生及其流行规律的研究[D];石河子大学;2015年
2 李雯;葡萄霜霉病拮抗菌和抗生素筛选及其防治效果的研究[D];河北农业大学;2015年
3 吕岩夫;葡萄霜霉病环境信息采集与控制系统的设计与实现[D];西北农林科技大学;2016年
4 梁跃;沈阳地区葡萄霜霉病流行预警及药剂防治研究[D];沈阳农业大学;2016年
5 王强;助剂对防治葡萄霜霉病药剂增效作用的研究[D];石河子大学;2016年
6 魏开来;葡萄霜霉病预测模型的研究[D];西北农林科技大学;2008年
7 李海强;石河子地区葡萄霜霉病的发生规律及防治研究[D];石河子大学;2009年
8 刘新秀;新疆葡萄霜霉病分布及种质资源抗病性鉴定[D];石河子大学;2013年
9 唐艳;湖南省葡萄霜霉病的发病规律及药剂筛选[D];湖南农业大学;2014年
10 杜兴兰;葡萄霜霉病和白粉病生物防治的研究[D];河北农业大学;2008年
,本文编号:1807165
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/1807165.html