野生种毛棉主要生育期抗旱和花铃期光合作用的QTL定位
本文选题:毛棉 + 种间杂交 ; 参考:《中国农业科学院》2016年博士论文
【摘要】:中国是世界最大的棉花生产国、消费国、进口国和纺织品出口国,棉花在国民经济中起到不可替代的重要作用,也是我国出口创汇的重要商品。由于粮食安全问题,棉花种植区开始向东部沿海、西北内陆及内蒙古等盐碱、旱地转移。棉花属于耗水作物,干旱抑制棉花地上地下部分生长,对营养生长、生殖生长发育和光合作用等造成严重影响,最终导致棉花产量下降、品质降低。培育抗旱品种是解决旱地植棉的重要途径,由于栽培种资源遗传基础狭窄,难以挖掘到如野生棉具有的优异基因,加之传统育种难以聚合高产、优质和抗旱等优良性状,而利用相关基因检测及分子标记辅助选择为挖掘野生种优异基因提供了有效手段。因此,本研究采用四倍体野生种毛棉和我国黄河流域历史主栽品种中棉所12为亲本进行杂交,配制(中棉所12×毛棉)F2作图群体,并构建遗传连锁图谱,通过对F2:3家系苗期、蕾期、盛花期和盛铃期抗旱相关性状及盛花期的光合性状进行QTL定位,以期揭示毛棉抗旱和光合作用性状的遗传基础,检测稳定的主效QTL,为有效发掘利用毛棉的优异基因,开展抗旱及高光效分子标记辅助选择育种奠定基础。1.苗期抗旱性状QTL定位利用复合区间作图法,对干旱胁迫(W1)及正常灌水(W2)环境下F2:3群体苗期形态和生理性状进行QTL定位,共检测到41个形态和生理性状QTL。其中,在干旱胁迫下,检测到21个控制形态和生理性状的QTL位点,包括2个宽高比、3个叶片数、2个叶面积、5个株高的形态性状QTL位点和2个叶绿素含量、2个脯氨酸、5个丙二醛的生理性状QTL位点,其中13个增效等位基因来自于毛棉,8个增效等位基因来自于中棉12,共检测到6个加性QTL,单个位点可解释6.93-16.93%的表型变异。在正常灌水下,共检测到20个控制形态和生理性状的QTL,包括2个株宽、6个宽高比、3个叶面积、4个株高的形态性状的QTL位点和4个丙二醛、1个脯氨酸的生理性状的QTL位点,其中12个增效等位基因来自于中棉所12,8个增效等位基因来自于毛棉,共检测到5个加性QTL,单个位点可解释6.61-15.19%的表型变异。共检测到16个控制苗期形态和生理性状抗旱系数QTL位点,其中与株高、叶片数、叶绿素含量、脯氨酸含量和丙二醛含量抗旱系数的QTL位点分别有5个、1个、3个、3个和4个,其中10个增效等位基因来自于毛棉,6个增效等位基因来自于中棉所12,共检测到5个加性QTL,单个位点可解释8.60-25.80%的表型变异。2.蕾期、盛花期、盛铃期抗旱性状QTL定位利用复合区间作图法,对2014-2015连续两年在干旱胁迫(W1)及正常灌水(W2)条件下F2:3群体蕾期、盛花期和盛铃期的13个形态和生理性状进行QTL定位,总共检测到166个QTL:W1环境下检测到71个控制形态及生理性状的QTL位点,其中蕾期包括8个叶绿素含量、5个叶面积、10个叶片数、7个株高的QTL位点,盛花期包括5个叶绿素含量、7个叶鲜重、7个叶干重、8个株高的QTL位点,盛铃期包括7个单铃重、8个果枝数、4个株高的QTL位点,其中31个增效等位基因来自于毛棉,40个增效等位基因来自于中棉所12,共检测到13个加性QTL,单个位点可解释6.07-13.34%的表型变异;正常灌水(W2)环境下检测到35个控制形态和生理性状的QTL,其中蕾期包括3个株高、1个叶片数、2个叶面积、4个叶绿素含量的QTL位点,盛花期包括4个叶鲜重、6个叶干重、2个叶绿素含量的QTL位点,盛铃期包括4个单铃重、5个果枝数、4个株高的QTL位点,其中20个增效等位基因来自于毛棉,15个增效等位基因来自于中棉所12,共检测到8个加性QTL,单个位点可解释9.2-19.88%的表型变异。共检测到24个控制蕾期形态和生理性状抗旱系数QTL,包括控制8个叶绿素含量、5个叶面积、4个叶片数和7个株高的抗旱系数QTL位点,其中9个增效等位基因来自于毛棉,15个增效等位基因来自于中棉所12,检测到2个加性QTL,单个位点可解释10.93-15.8%的表型变异。共检测到9个控制盛花期形态和生理性状抗旱系数QTL,包括2个叶绿素含量、6个株高和1个叶鲜重的抗旱系数QTL位点,其中6个增效等位基因来自于毛棉,3个增效等位基因来自于中棉所12,检测到2个加性QTL,单个位点可解释29.73-16.18%的表型变异。共检测到27个控制盛铃期形态性状抗旱系数QTL,包括5个单铃重、5个果枝数,11个主茎粗、5个果枝始节和1个株高的抗旱系数QTL位点,其中10个增效等位基因来自于毛棉,17个增效等位基因来自于中棉所12,共检测到4个加性QTL,单个位点可解释8.41-11.97%的表型变异。2014、2015连续两年在干旱胁迫环境下检测到6个稳定的抗旱性状QTL位点,包括1个控制蕾期叶面积(qBLA-Chr5-1)的QTL位点,单个位点可解释9.00-13.30%的表型变异;1个控制蕾期叶绿素含量(qBCC-Chr9-1)的QTL位点,1个控制盛花期叶绿素含量(q FCC-Chr8-1)的QTL位点,单个位点可解释4.10-16.00%的表型变异;1个控制单铃重(qFBBW-Chr16-1)的QTL位点,单个位点可解释6.4-7.0%的表型变异、2个控制主茎粗(qFBSD-Chr21-1和qFbsd-Chr21-2)的QTL位点,单个位点可解释0.8-2.3%的表型变异。11个QTL簇分布在Chr2、5、6、14、16和21染色体上,其中Chr16染色体上分布了4个QTL簇。3.光合性状QTL定位利用复合区间作图法(CIM),对2014年、2015年干旱胁迫(W1)及正常灌水(W2)两个环境下F2:3家系花铃期光合性状QTL进行定位,共检测到45个QTL。在干旱胁迫下,检测到27个控制光合性状的QTL位点,包括6个净光合速率、2个胞间CO2浓度、2个蒸腾速率、5个气孔导度、5个叶片温度和7个水分利用率的QTL位点,共检测到4个加性QTL,单个位点可解释为11.00-13.76%的表型变异。在正常灌水下,共检测到18个控制光合性状QTL位点,包括1个净光合速率、3个胞间CO2浓度、1个气孔导度、4个叶片温度和9个水分利用率(WUE)的QTL位点,共检测到4个加性QTL,单个位点可解释为11.00-13.76%的表型变异。qPn-Chr16-1是在2014、2015连续两年在干旱胁迫环境下检测到稳定的控制光合速率的QTL位点,位于Chr16染色体上,单个位点可解释9.44-18.61%的表型变异。qGs-Chr5-1在2015年干旱和正常灌水环境中检测到控制气孔导度的QTL位点,单个位点可解释0.66-0.67%的表型变异。
[Abstract]:China is the world's largest cotton producer, consumer, importer and textile exporter. Cotton plays an irreplaceable role in the national economy. It is also an important commodity for China's export of foreign exchange. Because of the problem of food security, the cotton planting area has begun to transfer to the east coast, the northwest inland and Inner Mongolia and other saline alkali, dryland transfer. In water consumption crops, drought inhibits the growth of the upper and subterranean parts of the cotton ground, which has a serious effect on the growth of nutrition, reproductive growth and photosynthesis, and eventually leads to the decrease of cotton yield and quality. It is an important way to solve the cotton planting in dry land. Some excellent genes, in addition to traditional breeding, are difficult to polymerize high yield, high quality and drought resistance, and the use of related gene detection and molecular marker assisted selection provides an effective means for the mining of the excellent genes of wild species. Therefore, this study uses the tetraploid wild wool cotton and the main plant of the the Yellow River basin, China, as a parent. In order to reveal the genetic basis of drought resistance and Photosynthesis Characteristics of cotton wool, the genetic basis of drought resistance and Photosynthesis Characteristics of wool cotton were revealed by using the genetic linkage map of F2 F2 mapping population and genetic linkage map. The genetic basis of the drought resistance and photosynthesis character of wool cotton was revealed, and the stable main effect QTL was detected, which was effectively excavated. Using the excellent genes of wool cotton, the drought resistance and high light efficiency molecular marker assisted selection breeding were used to lay the foundation for the drought resistance of.1. at seedling stage and QTL positioning using compound interval mapping method. The morphological and physiological characters of the seedling stage of F2:3 population in the environment of drought stress (W1) and normal irrigation (W2) were located by QTL, and 41 morphological and physiological traits, QTL., were detected. Under drought stress, the QTL loci of 21 control morphology and physiological characters were detected, including 2 width height ratio, 3 leaf number, 2 leaf area, 5 plant height morphological characters QTL and 2 chlorophyll content, 2 proline and 5 malondialdehyde's physiological character QTL locus, and 13 synergistic alleles from wool cotton and 8 synergistic alleles. Due to a total of 6 additive QTL from China Cotton 12, single loci could explain the phenotypic variation of 6.93-16.93%. Under normal irrigation, 20 QTL of control morphology and physiological characters were detected, including 2 plant width, 6 width to height ratio, 3 leaf area, 4 plant height and 4 malondialdehyde and 1 proline physiological QTL. The 12 alleles of the synergistic allele were derived from the 12,8 allele of CCP from wool cotton, and 5 additive QTL were detected. A single locus could be used to explain the phenotypic variation of 6.61-15.19%. A total of 16 physiological traits controlling the drought resistance coefficient QTL loci were detected, including plant height, leaf number, chlorophyll content and proline content QTL loci and malondialdehyde content resistance coefficient were 5, 1, 3, 3 and 4, of which 10 synergistic alleles came from wool cotton, 6 synergistic alleles came from Mian 12, and 5 additive QTL was detected. Single loci could explain the phenotypic variation of 8.60-25.80% in.2. buds, flowering period, and QTL location and utilization of drought resistance during the flourishing period. In 2014-2015 consecutive years, 13 morphological and physiological characters of F2:3 population under drought stress (W1) and normal irrigation (W2), 13 morphological and physiological characters in full bloom and boll stage were located in 2014-2015 consecutive years. In total, 71 control forms and QTL loci were detected in 166 QTL:W1 environments, including 8 chlorophyll content in buds. The amount, 5 leaf area, 10 leaf number and 7 plant height QTL loci, including 5 chlorophyll content, 7 leaf fresh weight, 7 leaf dry weight, 8 plant high QTL loci, including 7 single bell weight, 8 fruit branches and 4 high QTL loci, of which 31 synergistic alleles come from wool cotton and 40 alleles come from Central Cotton 12, A total of 13 additive QTL were detected, single loci could explain the phenotypic variation of 6.07-13.34%; 35 control morphology and physiological characters were detected in normal irrigation (W2) environment, and bud period included 3 plant height, 1 leaf number, 2 leaf area, 4 chlorophyll content QTL site, 4 leaf fresh weight, 6 leaf dry weight, 2 chlorophyll content in blossom period. The QTL site, which consists of 4 single bolls weight, 5 fruit branches and 4 QTL loci, of which 20 synergistic alleles come from wool cotton, 15 synergistic alleles come from the middle cotton station 12, and 8 additive QTL are detected, and the single locus can explain the phenotypic variation of 9.2-19.88%. A total of 24 control buds and physiological traits are tested for drought resistance. Coefficient QTL, including controlling 8 chlorophyll content, 5 leaf area, 4 leaf number and 7 plant height resistance coefficient QTL loci, of which 9 synergistic alleles come from wool cotton, 15 synergistic alleles come from middle cotton 12, 2 additive QTL, single loci can explain the phenotypic variation of 10.93-15.8%. A total of 9 controlled flowering periods were detected. The drought resistance coefficient QTL of morphological and physiological characters, including 2 chlorophyll content, 6 plant height and 1 leaf fresh weight resistance coefficient QTL loci, 6 synergistic alleles come from wool cotton, 3 synergistic alleles come from the middle cotton station 12, 2 additive QTL, and single loci can explain the phenotypic variation of 29.73-16.18%. A total of 27 controls were detected. The drought resistance coefficient QTL, including 5 single bolls weight, 5 fruit branches, 11 main stems, 5 fruit branches and 1 plant high drought resistance QTL loci, 10 of the synergistic alleles came from wool cotton, 17 synergistic alleles came from the middle cottoninstitute 12, and 4 additive QTL were detected. The single locus could explain the phenotypic variation of 8.41-11.97%. 6 stable Drought Resistant Traits QTL loci were detected by.20142015 for two years under drought stress, including 1 QTL locus to control bud leaf area (qBLA-Chr5-1). Single loci could explain the phenotypic variation of 9.00-13.30%, 1 QTL locus of chlorophyll content (qBCC-Chr9-1) at the bud control period, and 1 chlorophyll content (Q FCC-Chr8-1) during the flowering period (Q FCC-Chr8-1). ) QTL loci, single loci can explain the phenotypic variation of 4.10-16.00%, 1 QTL locus controlling single boll weight (qFBBW-Chr16-1), single loci which can explain the phenotypic variation of 6.4-7.0%, 2 QTL loci for controlling the main stem (qFBSD-Chr21-1 and qFbsd-Chr21-2), and the phenotypic variation of 0.8-2.3% in single loci,.11 QTL cluster of.11, distributed in Chr2,5,6,14,16 and On the 21 chromosome, 4 QTL cluster.3. photosynthetic characters were located on the Chr16 chromosome, and QTL location using compound interval mapping (CIM) was used. In 2014, 2015, drought stress (W1) and normal irrigation (W2), the photosynthetic characteristics of the flower and boll phase of F2:3 family were located in two environments, and 45 QTL. were detected under drought stress and 27 controlled photosynthetic characteristics were detected. The QTL locus, including 6 net photosynthetic rates, 2 intercellular CO2 concentrations, 2 transpiration rates, 5 stomatal conductance, 5 leaf temperatures and 7 QTL loci of 7 water utilization, detected 4 additive QTL, single loci can be interpreted as the phenotypic variation of 11.00-13.76%. Under normal irrigation, 18 controlled photosynthetic traits were detected, including 1. Net photosynthetic rate, 3 intercellular CO2 concentrations, 1 stomatal conductance, 4 leaf temperatures and 9 water use rate (WUE) QTL loci, a total of 4 additive QTL were detected, and single loci could be interpreted as 11.00-13.76% phenotypic variation.QPn-Chr16-1 is a stable QTL locus for controlling photosynthetic rate under 20142015 consecutive years of drought stress. On the Chr16 chromosome, a single locus can explain the phenotypic variation of 9.44-18.61%,.QGs-Chr5-1, to detect the QTL locus for controlling stomatal conductance in the drought and normal irrigation environment in 2015, and a single locus can explain the phenotypic variation of 0.66-0.67%.
【学位授予单位】:中国农业科学院
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S562
【参考文献】
相关期刊论文 前10条
1 王海标;陈全家;刘鹏鹏;张海燕;曾凯;柴颜军;朱燕飞;江群;曲延英;;苗期干旱胁迫对棉花生理特性、产量构成因素和纤维品质的影响[J];新疆农业科学;2013年12期
2 冯方剑;宋敏;陈全家;姚正培;李杨阳;刘艳;王兴安;曲延英;;棉花苗期抗旱相关指标的主成分分析及综合评价[J];新疆农业大学学报;2011年03期
3 王义青;李俊文;石玉真;刘爱英;商海红;龚举武;王涛;巩万奎;袁有禄;;陆地棉高品质品系纤维品质性状QTL的分子标记及定位[J];棉花学报;2010年06期
4 秦永生;刘任重;梅鸿献;张天真;郭旺珍;;陆地棉产量相关性状的QTL定位[J];作物学报;2009年10期
5 林忠旭;冯常辉;郭小平;张献龙;;陆地棉产量、纤维品质相关性状主效QTL和上位性互作分析[J];中国农业科学;2009年09期
6 昝伟;高峰;刘海峰;李国英;宋武;罗城;李晖;;海岛棉抗黄萎病性状分子标记的研究及QTL的定位[J];新疆农业科学;2008年05期
7 陈伦林;邹小云;李书宇;邹晓芬;张建模;宋来强;;SSR和SRAP标记揭示甘蓝型油菜遗传多样性的差异分析[J];分子植物育种;2008年03期
8 吴银明;王平;刘洪升;刘淑英;王娟;;分根PEG胁迫对羊草幼苗植物量、活性氧代谢及脯氨酸含量的影响[J];甘肃农业大学学报;2008年02期
9 杨昶;郭旺珍;张天真;;陆地棉抗黄萎病、纤维品质和产量等农艺性状的QTL定位[J];分子植物育种;2007年06期
10 甄瑞;王省芬;马峙英;张桂寅;王雪;;海岛棉抗黄萎病基因SSR标记研究[J];棉花学报;2006年05期
相关博士学位论文 前6条
1 葛学亮;黄颡鱼(Pelteobagrus fulvidraco)遗传图谱构建及生长相关性状的QTL定位[D];东北林业大学;2010年
2 孔广超;陆地棉RIL群体遗传图谱构建及产量与纤维品质QTL定位[D];浙江大学;2009年
3 李成奇;棉花衣分等产量性状的遗传、QTL定位及不同衣分材料纤维初始发育的比较研究[D];南京农业大学;2007年
4 宋美珍;短季棉早熟不早衰生化遗传机制及QTL定位[D];中国农业科学院;2006年
5 沈新莲;陆地棉纤维品质QTL的筛选、定位及其应用[D];南京农业大学;2004年
6 袁有禄;棉花优质纤维特性的遗传及分子标记研究[D];南京农业大学;2000年
相关硕士学位论文 前8条
1 孔祥瑞;棉花黄萎病抗性的分子标记研究[D];中国农业科学院;2011年
2 张兴居;棉花新种质鲁HB22黄萎病抗性、产量和纤维品质的分子标记[D];山东农业大学;2011年
3 李东晓;干旱对棉花叶片的衰老生理及抗氧化酶同工酶谱特征的影响[D];河北农业大学;2010年
4 高伟;四倍体棉种的遗传多样性分析[D];华中农业大学;2010年
5 王俊芳;基于SSR标记的棉种真实性和品种纯度鉴定技术研究[D];中国农业科学院;2009年
6 张先亮;陆地棉重要农艺性状的QTL定位[D];中国农业科学院;2007年
7 吴翠翠;棉花黄萎病抗性的分子标记和QTL定位[D];华中农业大学;2007年
8 蒿若超;新疆陆地棉纤维品质性状的遗传模型与QTL分析[D];中国农业大学;2005年
,本文编号:1954549
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/1954549.html