当前位置:主页 > 硕博论文 > 农业博士论文 >

四种木麻黄种源变异与选择研究

发布时间:2018-06-01 19:07

  本文选题:木麻黄 + 种源 ; 参考:《中国林业科学研究院》2017年博士论文


【摘要】:木麻黄(Casuarina)树种作为我国华南沿海地区最成功的外引树种,具有速生、防风、固沙、抗逆及耐瘠薄等优良特性,是重要的防护林、用材林和多用途林树种。我国集中性对木麻黄多树种、种源数量丰富且系统的种源试验研究报道较少,特别是含有大量原产地种质材料;同时对木麻黄种源材性遗传变异规律的研究还未见报道。本文以短枝木麻黄、粗枝木麻黄、细枝木麻黄和山地木麻黄为材料开展种源试验,对木麻黄的生长、适应性、形质和材质等性状进行分析研究,对其遗传参数进行估算,揭示种源间性状的遗传变异规律,为木麻黄的良种选育和种质资源的合理利用提供理论依据。主要研究结果如下:(1)造林后2a、5a和7a时,4种木麻黄保存率在种源间差异显著(P0.05)或极显著(P0.01)。造林后2a时,短枝木麻黄的种源保存率最高,山地木麻黄最低;造林后5a时,粗枝木麻黄种源保存率最高,短枝木麻黄最低。台风过后,即7a时短枝木麻黄种源Dongfang、Ledong和Huian保存率均在80%以上,粗枝木麻黄种源13143、13139、13146和16363的保存率均在85%以上,细枝木麻黄种源15004、15574和CK的保存率均在75%以上,山地木麻黄种源18844、18846、18849和19489的保存率均在70%以上,说明4种木麻黄抗风性在种源间均呈现极显著性差异(P0.01),其抗风性强弱依次为短枝木麻黄、山地木麻黄、粗枝木麻黄和细枝木麻黄。其抗风性种源遗传力和遗传异系数变幅分别为0~0.108和0.05%~4.17%,均以细枝木麻黄为最高,粗枝木麻黄最低;入选率为20%时,细枝木麻黄种源抗风性选择增益最大(2.33%),其次为短枝木麻黄(0.75%),粗枝木麻黄和山地木麻黄则接近0。(2)3个测定年份,4种木麻黄种源间树高、胸径和单株材积均存在显著(P0.05)或极显著差异(P0.01);短枝木麻黄的5个种源(Yangxi、Dianbai、Ledong、Dongshan和18244)、粗枝木麻黄的5个种源(13139、13144、15218、15939和16361)、细枝木麻黄2个种源(14005和20477)以及山地木麻黄3个种源(19489、19490和17877)的生长性状均高于其总均值。粗枝木麻黄生长性状的种源遗传力和遗传变异系数在3个测定年份均明显低于其他3种木麻黄,以7a时细枝木麻黄单株材积的种源遗传力和遗传变异系数为最高,分别为0.403和68.70%;除了粗枝木麻黄,其他3种木麻黄单株材积的遗传变异系数要远远大于树高和胸径。造林后7a时,采用20%的入选率,粗枝木麻黄生长性状的种源遗传增益均低于0.21%,其他3种木麻黄的树高、胸径和单株材积的遗传增益变幅分别为1.28%~6.59%、0.92%~12.63%和1.93%~39.86%。造林后7a时,短枝木麻黄的树高最大,其次为山地木麻黄、粗枝木麻黄,细枝木麻黄最小;胸径和单株材积则以短枝木麻黄为最大,粗枝木麻黄最小。(3)短枝木麻黄种源间侧枝粗细(TPB)、侧枝分枝角(APB)、侧枝长度(LPB)、绿色小枝长度(LDB)、主干分叉习性(AP)及主干通直度(SFS)的差异达到显著性水平,其种源遗传力和遗传变异系数范围分别为0.004~0.242和0.48%~5.79%,当入选率为20%时,其上述形质性状的遗传增益范围为0.01%~3.72%;粗枝木麻黄种源间LDB和SFS的差异达到显著性水平,其种源遗传力和遗传变异系数范围分别为0.042~0.283和2.72%~5.69%,当入选率为20%时,其上述形质性状的遗传增益范围为0.68%~5.13%;细枝木麻黄种源间侧枝密度(DPB)、TPB、APB和SFS的差异达到显著性水平,其种源遗传力和遗传变异系数范围分别0.021~0.247和2.01%~3.49%,当入选率为20%时,其上述形质性状的遗传增益范围为0.25%~2.03%;山地木麻黄种源间TPB、APB、LDB、AP及SFS的差异达到显著性水平,其种源遗传力和遗传变异系数范围分别0.007~0.088和0.93%~5.56%,当入选率为20%时,其上述形质性状的遗传增益范围为0.07%~2.45%。(4)造林后7a时,木材密度(BD)、纤维长度(FL)和纤维长宽比(LTW)在4种木麻黄种源间均存在显著性差异,纤维宽度(FW)仅在短枝木麻黄种源间存在显著差异。短枝木麻黄5个种源(Maoming、Dongfang、18015、18244和18122)和山地木麻黄1个种源(19490)木材密度均在0.70 g?cm-3以上,粗枝木麻黄4个种源(15932、15938、15941和19242)和细枝木麻黄1个种源(14005)的木材密度在0.60 g?cm-3以上;1个短枝木麻黄种源(18298)、1个粗枝木麻黄种源(CK)、2个细枝木麻黄种源(14005、20477)和4个山地木麻黄种源(18849、17877、19239和19238)的纤维长度在0.85 mm以上。4种木麻黄木材密度、纤维长度和纤维长宽比的种源遗传力变幅分别为0.155~0.519、0.143~0.504和0.094~0.489,其遗传变异系数范围分别为2.82%~10.16%、4.67%~10.64%和3.90%~10.94%,种源遗传力和遗传变异系数均以细枝木麻黄为最大。入选率为20%时,短枝木麻黄、粗枝木麻黄和山地木麻黄的木材密度、纤维长度和纤维长宽比的种源遗传增益大多在2%以下,仅山地木麻黄木材密度的遗传增益接近5%,而细枝木麻黄材性的遗传增益均在5%以上。(5)3个测定年份,4种木麻黄种源树高、胸径及单株材积等3个生长性状间,表型和遗传相关均达到极显著正相关(P0.01),表明生长性状相互间关系紧密,可以用于早期预测。抗风性与形质、材质形状间的相关性表明,粗枝木麻黄抗风性与所有形质、材质形状间的遗传相关不显著;短枝木麻黄的RES与TPB、AP、BD间呈显著遗传正相关(P0.01),与APB间极显著遗传负相关(P0.01),在抗风性选择时,重点关注侧枝粗细、主干分叉位点、木材密度及分枝角等性状;细枝木麻黄的RES与SFS、BD、FL间为显著的正表型和遗传相关(P0.05-0.01),在抗风性选择时,重点关注主干通直度、木材密度大、纤维长度等性状;山地木麻黄的RES与SFS、FL间为显著的正表型和遗传相关(P0.05-0.01),在抗风性选择时,重点关注主干通直度高和纤维长度等性状。生长与形质、材质形状间的相关性表明,短枝木麻黄和细枝木麻黄生长性状与FL间呈极显著遗传正相关(P0.01),与LTW间无显著相关(P≥0.05),在短枝木麻黄和细枝木麻黄的材性选择过程中可以对生长性状和LTW分开选择,长纤维的选择可以考虑速生性种源。(6)选用树高H7(X1)、胸径D7(X2)、抗风性RES(X3)、侧枝粗细TPB(X4)、主干通直度SFS(X5)、木材密度BD(X6)、纤维长度FL(X7)、纤维宽度FW(X8)、纤维长宽比LTW(X9)这9个性状构建选择指数方程。以等权法指数方程进行选择,短枝木麻黄优良种源为Dongshan、Lingao、Ledong和18127;粗枝木麻黄优良种源为13141、13987、13142和15939;细枝木麻黄优良种源为20477和15574;山地木麻黄优良种源为17877、19490、19489和18849。以强调生长性状指数方程进行选择,短枝木麻黄优良种源为Dongshan、Lingao、Ledong和18127;粗枝木麻黄优良种源为13141、13987、13142和15939;细枝木麻黄优良种源为14005和20477;山地木麻黄优良种源为19490、19489、17877和18950。以强调材质性状指数方程进行选择,短枝木麻黄优良种源为18269、Dongshan、Lingao和Huian;粗枝木麻黄优良种源为13141、13987、13142和15939;细枝木麻黄优良种源为20477和13519;山地木麻黄优良种源为17877、19490、19489和18849。
[Abstract]:Casuarina (Casuarina) tree is the most successful tree species in the coastal area of Southern China. It has excellent characteristics such as fast growth, wind proof, sand fixation, resistance and barren resistance. It is an important protective forest, timber forest and multipurpose forest species. The study on the genetic variation of the origin of the origin of the yellow seeds has not been reported. In this paper, the species of Casuarina ephedra, the Casuarina equisetifolia, the Casuarina equisetifolia and the mountain Casuarina are tested. The growth, adaptability, quality and material of Casuarina equisetifolia are analyzed and studied. The parameters were estimated to reveal the genetic variation of interprovenance traits and provide theoretical basis for breeding and rational utilization of germplasm resources of Casuarina equisetifolia. The main results are as follows: (1) when 2a, 5A and 7a after afforestation, the 4 species of Casuarina equisetifolia have significant difference (P0.05) or extremely significant (P0.01). The species of Casuarina ephedra at 2A after afforestation. The preservation rate of source was the highest and Sanchi Kiasahuang was the lowest. The preservation rate of the source of Casuarina was the highest and the Casuarina ephedra was the lowest at 5A after afforestation. The preservation rate of Ledong and Huian was above 80% after the typhoon, and the preservation rate of Ledong and Huian was above 85%, and the preservation rate of the source 131431313913146 and 16363 of the crude Casuarina equisetifolia were more than 85%. The preservation rate of source 1500415574 and CK is above 75%, and the preservation rate of Sanchi Kiasahuang source 188441884618849 and 19489 is above 70%. It shows that the wind resistance of 4 species of Casuarina equisetifolia has significant difference between species (P0.01). The resistance to wind is in the order of short branch Casuarina, Casuarina equisetifolia, roughing Casuarina and Casuarina. The variation of genetic force and genetic variation coefficient were 0~0.108 and 0.05%~4.17% respectively, which were the highest in Casuarina equisetifolia and the lowest in roughwood ephedra. When the entry rate was 20%, the selection gain of the provenance was the largest (2.33%), the second was ephedra Ephedra (0.75%), and the Casuarina equisetifolia and the mountain Casuarina equisetifolia were close to 0. (2) 3 Determination years, 4. There are significant (P0.05) or extremely significant difference (P0.01) between the trees of the yellow seed and the tree volume, 5 sources (Yangxi, Dianbai, Ledong, Dongshan and 18244), 5 provenances (13139131441521815939 and 16361), 2 source (14005 and 20477) of Casuarina, and 3 species of Casuarina equisetifolia. The growth traits of (1948919490 and 17877) were higher than that of the total. The source heritability and genetic variation coefficient of the growth traits of the Casuarina equisetifolia were significantly lower than those of the other 3 species of Casuarina. The number of seed heritability and genetic variation of the single tree volume of Casuarina equisetifolia at 7a was the highest, 0.403 and 68.70%, respectively, except for the coarse branches. The genetic variation coefficient of Casuarina equisetifolia, the genetic variation coefficient of the individual volume of the other 3 species of Casuarina equisetifolia is far greater than the tree height and the breast diameter. The genetic gain of the growth traits of the growth traits of the Casuarina equisetifolia is less than 0.21%, the other 3 species of Casuarina equisetifolia are higher than 0.21%, and the genetic gain of the diameter and the individual volume of the 3 species of Casuarina equisetifolia is 1.28%~6.59%, 0.92%~12.63%, respectively, 0.92%~12.63% The tree height of Casuarina equisetifolia was the highest, followed by Casuarina Ephedra in mountain area, followed by Casuarina ephedra, roughing wood ephedra, and twigs ephedra, while the diameter and volume of DBH and single tree volume were the largest and the roughage Casuarina was the smallest. (3) TPB, APB, LPB, green branch length, and branch length (APB). Degree (LDB), the difference of trunk bifurcation habit (AP) and trunk straightness (SFS) reached a significant level. The heritability and genetic variation coefficient range of its provenance were 0.004~0.242 and 0.48%~5.79% respectively. When the rate of admission was 20%, the genetic gain of the above morphic traits was 0.01%~3.72%, and the difference of LDB and SFS among the root of the tree species was significant. The genetic and genetic variation coefficients of their provenances were 0.042~0.283 and 2.72%~5.69% respectively. When the rate of admission was 20%, the genetic gain of the above morphic traits was 0.68%~5.13%; the difference in the inter source side branch density (DPB), TPB, APB and SFS reached a significant level, and its provenance heritability and genetic variation coefficient model were in the range of 0.68%~5.13%. 0.021~0.247 and 2.01%~3.49% respectively, when the rate of admission was 20%, the genetic gain of the above morphic traits was 0.25%~2.03%, and the difference of TPB, APB, LDB, AP and SFS between the yellow seeds of mountain Casuarina and LDB, AP and SFS reached a significant level, and the genetic and genetic variation coefficients of the species were 0.007~0.088 and 0.93%~5.56% respectively. When the rate of selection was 20%, it was mentioned above. The genetic gain of the shape and quality traits was 0.07%~2.45%. (4) after the afforestation of 7a, the wood density (BD), fiber length (FL) and fiber length width ratio (LTW) were significantly different among the 4 species of Casuarina, and the fiber width (FW) was only significant between the yellow seeds of the short branched Casuarina and 5 species of Ephedra sinica (Maoming, Dongfang, 1801518244 and 18122). The density of 1 sources (19490) of the mountain Casuarina (19490) is above 0.70 G? Cm-3, and the wood density of 4 species (159321593815941 and 19242) and 1 species of Casuarina equisetifolia (14005) are more than 0.60 G? Cm-3; 1 short branched Casuarina provenances (18298), 1 source of Casuarina Ephedra (CK), and 2 species of Casuarina equisetifolia (1400520477) and The fiber length of 4 montane Casuarina species (188491787719239 and 19238) is more than 0.85 mm, and the density of.4 species of Casuarina equisetifolia, fiber length and fiber length width ratio are 0.155~0.519,0.143~0.504 and 0.094~0.489, respectively, and the genetic variation coefficients are 2.82%~10.16%, 4.67%~10.64% and 3.90%~10.94%, respectively. The coefficient of transmission and genetic variation was the largest of Casuarina equisetifolia. When the rate of entry was 20%, the wood density, fiber length and fiber length and width ratio of the wood density, fiber length and fiber length width ratio of the Casuarina ephedra were mostly less than 2%. The inheritance gain of the wood density of Casuarina equisetifolia was close to 5%, and the inheritance of wood properties of Casuarina equisetifolia was inherited. The gain is above 5%. (5) 3 dating years, 4 species of Casuarina equisetifolia tree height, breast diameter and individual volume, and other 3 growth traits, both phenotypic and genetic correlation all reach very significant positive correlation (P0.01), indicating that the growth traits are closely related to each other and can be used for early prediction. The genetic correlation between the yellow wind resistance and the shape of all shapes and materials is not significant; RES and TPB, AP, BD have significant genetic correlation (P0.01), and have significant genetic negative correlation with APB (P0.01). In the selection of wind resistance, the emphasis is on the characters of the lateral branch, the trunk bifurcation site, the wood density and the branch angle, and the RES of the Casuarina equisetifolia. The significant positive phenotypic and genetic correlation (P0.05-0.01) is between SFS, BD and FL. In the selection of wind resistance, the main focus is on the trunk straightness, the large wood density, the fiber length and so on. The RES and SFS in the mountain Casuarina equisetifolia, and the FL are significant positive phenotypic and genetic correlation (P0.05-0.01). In the selection of wind resistance, the main focus is on the high straightness and fiber length of the main trunk. The correlation between growth and shape and material shape showed that the growth traits of Casuarina ephedra and Casuarina equisetifolia were positively correlated with FL (P0.01), and had no significant correlation with LTW (P > 0.05). The growth traits and LTW could be selected separately and long fiber in the selection process of Casuarina ephedra and Casuarina equisetifolia. Selection can consider the fast-growing source. (6) select tree height H7 (X1), DBH D7 (X2), wind resistance RES (X3), lateral branch thickness TPB (X4), trunk straightness SFS (X5), wood density BD (X6), fiber length, fiber width ratio, and fiber length width ratio. The excellent provenances were Dongshan, Lingao, Ledong and 18127. The excellent provenances of roughwood Casuarina were 131411398713142 and 15939, the excellent provenances of Casuarina equisetifolia were 20477 and 15574, and the excellent provenances of Sanchi Kiasahuang were 178771949019489 and 18849. to emphasize the exponential equation of growth traits. The excellent species of Casuarina ephedra were Dongshan, Lingao, Ledon. G and 18127; the excellent seed source of Casuarina equisetifolia is 131411398713142 and 15939, the fine species of Casuarina equisetifolia are 14005 and 20477, and the excellent source of the mountain Casuarina equisetifolia is 194901948917877 and 18950. to emphasize the material character index equation. The excellent seed source of the Casuarina ephedra is 18269, Dongshan, Lingao and Huian, and the excellent provenance of the Casuarina equisetifolia. The best provenances of Casuarina equisetifolia were 131411398713142 and 15939, 20477 and 13519 respectively, and the excellent provenances of Casuarina equisetifolia were 178771949019489 and 18849..
【学位授予单位】:中国林业科学研究院
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S792.93

【相似文献】

相关期刊论文 前10条

1 叶功富;张水松;徐俊森;苏全兴;林武星;王维辉;施纯淦;隆学武;;木麻黄低效防护林的结构特征和防护效能研究[J];防护林科技;2000年S1期

2 叶功富;张水松;徐俊森;林武星;曾国强;吴寿德;谭芳林;林捷;;木麻黄低效林类型划分及量化指标的研究[J];防护林科技;2000年S1期

3 曾国强;叶功富;王珏新;吴评阳;林武星;高美玲;吴惠忠;谭芳林;隆学武;;木麻黄低效防护林成因分析及改造途径的研究[J];防护林科技;2000年S1期

4 林武星;叶功富;郑天汉;赖文胜;徐俊森;杨细明;谭芳林;潘惠忠;;不同木麻黄树种的抗旱特性及其应用的研究[J];防护林科技;2000年S1期

5 黄婷婷;木麻黄防护林持续经营问题初探[J];福建林业科技;2001年01期

6 黄婷婷;;木麻黄防护林持续经营刍议[J];林业勘察设计;2001年02期

7 张云生;;椒江防护林 重用木麻黄[J];浙江林业;2002年07期

8 陈彦;王国明;周坚;;木麻黄抗逆性研究进展[J];植物学通报;2005年06期

9 李茂瑾;;木麻黄造林措施和混交造林技术研究[J];安徽农学通报;2008年17期

10 洪光亲;;浅谈木麻黄更新改造的有效途径[J];科技创业家;2012年16期

相关会议论文 前3条

1 陈_g;方发之;仲崇禄;张勇;陈雨;陈珍;;海南西部干旱地区木麻黄优良无性系选择研究[A];第十三届中国科协年会第16分会场-沿海生态建设与城乡人居环境学术研讨会论文集[C];2011年

2 王电杰;温国胜;童再康;许基全;邬金;刘婷霞;;浙江大鹿岛木麻黄种群的分布格局[A];第十三届中国科协年会第16分会场-沿海生态建设与城乡人居环境学术研讨会论文集[C];2011年

3 叶功富;侯杰;张立华;卢昌义;陈胜;黄荣钦;;木麻黄-厚荚相思混交林的根际土壤养分和酶活性[A];节能环保 和谐发展——2007中国科协年会论文集(三)[C];2007年

相关重要报纸文章 前5条

1 中国绿色时报记者 雷姝彦;木麻黄:无可替代的沿海沙地之绿[N];中国绿色时报;2010年

2 本报记者 范敏;木麻黄“绿化卫士”形神兼备[N];中国花卉报;2011年

3 ;沿海防护林优良树种——木麻黄[N];福建科技报;2004年

4 本报记者 何金 通讯员 张鹏 曾志刚;木麻黄的故事[N];福建日报;2014年

5 本报记者 张雷;“绿色屏障”与“威马逊”的生死较量[N];中国绿色时报;2014年

相关博士学位论文 前8条

1 韩强;四种木麻黄种源变异与选择研究[D];中国林业科学研究院;2017年

2 胡盼;短枝木麻黄种质资源遗传多样性研究[D];中国林业科学研究院;2015年

3 刘宪钊;热带海岸木麻黄人工林近自然经营模式研究[D];中国林业科学研究院;2011年

4 张勇;三种木麻黄的遗传改良研究[D];中国林业科学研究院;2013年

5 黄义雄;福建滨海木麻黄防护林生态功能研究[D];东北师范大学;2013年

6 林武星;木麻黄(Casuarina equisetifolia)自身他感作用响应规律的研究[D];福建农林大学;2005年

7 张立华;短枝木麻黄小枝单宁形成的环境效应[D];厦门大学;2009年

8 姚甲宝;人工模拟条件下木荷苗木觅取光养塑性行为及其种源差异[D];中国林业科学研究院;2017年

相关硕士学位论文 前10条

1 傅培佳;影响晋江市沿海基干林带造林成效的环境因子[D];福建农林大学;2015年

2 陈德志;海岸前沿风沙运动规律及其对木麻黄防护林的影响[D];福建农林大学;2015年

3 付甜;木麻黄水培生根生理特性及遗传变异的研究[D];中南林业科技大学;2016年

4 李慧敏;木麻黄林地微生物次生代谢产物及真菌群落结构多样性分析[D];海南师范大学;2016年

5 黄国宁;海南省岛东林场木麻黄退化人工林补植模式研究[D];中南林业科技大学;2015年

6 钟春柳;木麻黄生态化学计量特征及其对海岸梯度的响应[D];福建师范大学;2016年

7 郑锟;沙质海岸木麻黄防护林的结构配置与防护效能研究[D];福建农林大学;2008年

8 武冲;木麻黄生殖生物学研究[D];海南大学;2010年

9 林红叶;沿海木麻黄防护林可持续经营配套技术研究[D];福建农林大学;2010年

10 林爱玉;沿海沙地竹子和木麻黄林防风固沙性能研究[D];福建农林大学;2011年



本文编号:1965303

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/1965303.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6e00d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com