家蚕新突变体二龄不眠蚕基因的定位克隆及功能研究
[Abstract]:Silkworm (Bombyx mori), as an important economic Lepidoptera, has a special research value and has become an important experimental material. A large number of functional studies on genes and related basic research achievements have been accumulated in the earlier period. The silkworm has been developed into a model organism for the study of Lepidoptera. Breeding insects, molting is the important physiological process of its growth, development and metamorphosis, which is necessary for the growth and development of the silkworm. The two instar non-molting in the 2nd instar (Nm2) of silkworm is developed to death after the dormancy period of the silkworm. It is a new dormant silkworm mutant found in the silkworm species resource C603. The genetic analysis of the mutant was carried out. The Nm2 gene was located and cloned by the method of graph cloning, and the genetic linkage map was constructed. The expression analysis and functional verification of the candidate genes were carried out by using qRT-PCR, 2-DE, RNAi, ecdysone and cycloheximide, in order to explain the molecular mechanism of the mutant. The results are as follows: 1. The genetic analysis of the Nm2 mutant of the silkworm, the two instar silkworm mutant is a natural mutant obtained from the silkworm variety resource C603. The mutant can sleep all normal at the 1 age, and the skin is smooth and luster at the age of 2. The genetic analysis showed that the mutation was controlled by a recessive gene on autosomes with a recessive homozygous gene (nm2nm2) lethal. Two, Nm2 mutation gene was located to construct P1, P2, F1, BC1F and BC1M populations, and the SSR polymorphism molecular markers on each chain of the silkworm were screened by P1, F1 and P2, and then respectively, respectively. 2 types of normal and mutant individuals in the isolated BC1F and BC1M populations were tested. 10 two age non sleeping silkworm mutants and 10 normal individuals in the same moth region of the BC1F population were used as linkage analysis. The results showed that the Nm2 gene was located in the fifth linkage group of the silkworm, and the fine location of the 594 mutant individuals in the BC1M population showed the Nm2 base. Between the polymorphic markers S2529-27 and S2529-32, the two polymorphic markers were about 275.6kb, including 13 candidate genes. Three, the Nm2 mutation gene was identified using the RT-PCR method to compare the transcriptional level of the 13 candidate genes, and BMgn002601 and BMgn002602 were expressed between the normal and the mutant individuals. In order to further determine the main effect genes that cause two years of sleep, the ORF of two genes was cloned, and the ORF of the BMgn002601 was found to be no difference between the wild type and the mutant, while the BMgn002602 ORF in its functional area was missing the RNAi test of BMgn002602 in the BMgn002602, and the expression of BMgn002601 at the transcriptional level was reflected by the BMgn002602 expression. The expression of BMgn002601 at the transcriptional level increased with the decrease of BMgn002602 expression, and after RNAi of BMgn002602, the sleeping time of the two age silkworm could be delayed by 48h-72h. and therefore preliminarily deduced that BMgn002602 was the main gene of Nm2 mutation,.BMgn002602, a gene encoding the pekp of the silkworm, which was cloned to obtain BmCPG10. On the basis of the gene ORF sequence, the 3 'UTR, 5' UTR sequence and the promoter sequence of the BMgn002602 gene were obtained by RACE and cloned sequencing. In the mutant silkworm, the gene 5 'UTR and the promoter are in accordance with the wild type, and the 3' UTR sequence is different from the wild type. Four, the expression of the Nm2 mutation gene and its functional verification use fluorescence quantitative PC. The expression profiles and tissue expression profiles of the BmCPG10 gene in the wild type silkworm were measured by R. The.BmCPG10 gene was expressed in the silkworm, silkworm, silkworm, silkworm and the silkworm, while the larvae were high in the silkworm or high feeding period. The expression of the gene was reduced in the dormancy period or in the dormancy period of the silkworm, and the BmCPG10 based on the epidermis, the head and the trachea was highly expressed. In the midgut, martensite, martensite, anterior thymus, and blood, a small amount of.ELISA was also used to determine the titer of ecdysone in the Nm2 mutant and the wild type silkworm. It was found that the titer of the ecdysone in the mutant was significantly lower than that in the wild type. The mutants were fed with 20E, cholesterol and 7- dehydrogenase cholesterol, which could make most of the mutants in two When the age was sleeping and molting, but most of the mutants after the rescue could only develop to four years old. The wild type two years old silkworm feeding 20E, cycloheximide comprehensive analysis found that the expression of BmCPG10 and the titer of ecdysone have a negative correlation. We speculate that the mutation of BmCPG10 gene may affect the silkworm sterols. Absorption and utilization resulted in the deficiency of cholesterol in the raw material of ecdysone in the mutant body and the decrease of the titer of ecdysone, which resulted in the inability of the silkworm to sleep molting normally. Five, the comparative analysis of the proteomics of the mutant and wild type two years old silkworm epidermis analyzed the Nm2 mutants and the eggs of the wild type silkworm. The expression of white matter in the mutant was higher than that of the wild type. The protein point was a cysteine protease like protein encoded by the BmCP-like gene by mass spectrometry. The fluorescence quantitative PCR analysis showed that the relative expression of the gene in the mutant was significantly higher than that of the wild type, and the protein was significantly higher than that of the wild type. The expression of the level of the BmCP-like gene showed that the expression of the transcriptional level of the gene was higher in the 1-3 instar of the silkworm, but lower in the dormant silkworm, but higher in the 4 age feeding period, and lower in the sleeping and sleeping silkworms. The expression of the BmCP-like gene in the epidermis was higher, while the expression in the midgut and hemolymph was expressed in the tissue expression spectrum. It was found that the sequence of ORF in the mutant was consistent with the wild type, and the gene was RNAi in the two age of the wild type silkworm, which resulted in a high death rate. The two silkworm, which survived, also formed a black spot around the injection point. It was concluded that the gene may be involved in the immune system of the silkworm. The high expression of the gene may be for the sake of the silkworm. This study is helpful to understand the regulation mechanism of ecdysone on the growth and development of silkworm, and provide new ideas for the use of the functional genes of the silkworm to prevent and control the insect pests of the Bombyx mori by analyzing the molecular mechanism of the mutation of the silkworm, which is caused by the mutation of the BmCPG10 gene.
【学位授予单位】:江苏科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S881.2
【相似文献】
相关期刊论文 前10条
1 梁乃亭,魏玉波,布哈丽且木;水稻超绿突变体“绿花舞”[J];上海农业学报;2002年S1期
2 杨朝柱;李春寿;舒小丽;张志转;张磊;赵海军;马传喜;吴殿星;;富含抗性淀粉水稻突变体的淀粉特性[J];中国水稻科学;2005年06期
3 张焕丽;郭晋太;黄江涛;朱永;韩建明;杨爱国;张俊平;郭瑛;;辣椒黄绿苗突变体9906M的选育及利用[J];辣椒杂志;2006年01期
4 郝中娜;张红志;陶荣祥;;水稻类病斑突变体的初步研究[J];核农学报;2007年04期
5 韦存虚;谢佩松;周卫东;陈义芳;严长杰;;水稻脆性突变体叶的解剖结构和化学特性[J];作物学报;2008年08期
6 ;全世界共200000份水稻突变体可供科学研究[J];分子植物育种;2009年02期
7 王立丰;陈月异;;白条纹水稻突变体的光合特性分析[J];热带作物学报;2010年12期
8 ;中国科学家从玉米中提取出抗艾蛋白酶突变体[J];广西科学;2011年01期
9 张水金;郑轶;朱永生;杨东;涂诗航;周鹏;郑家团;黄庭旭;;水稻脆性突变体研究进展[J];福建农业学报;2011年05期
10 李金军;潘日定;陆金根;高荣村;;水稻无种子类突变体的保存方法研究[J];中国稻米;2013年02期
相关会议论文 前10条
1 易小平;陈芳远;卢升安;周开达;;空间环境诱发水稻突变体特异亲和性研究[A];面向21世纪的科技进步与社会经济发展(上册)[C];1999年
2 戴新宾;张荣铣;许长成;匡廷云;;水稻叶绿素b减少突变体的光抑制特性研究[A];全国植物光合作用、光生物学及其相关的分子生物学学术研讨会论文摘要汇编[C];2001年
3 金卫华;曹军卫;姚保利;雷铭;;细菌视紫红质多突变体的构建及其功能研究[A];第二届中国青年学者微生物遗传学学术研讨会论文集[C];2006年
4 胡天岑;王奎锋;李连维;陈静;蒋华良;沈旭;;SARS冠状病毒3CL蛋白酶突变体的结构对其聚合-活性关系的提示[A];中国晶体学会第四届全国会员代表大会暨学术会议学术论文摘要集[C];2008年
5 李鹏丽;王宁宁;;微型番茄黄叶突变体的获得与鉴定[A];中国植物生理学会第十次会员代表大会暨全国学术年会论文摘要汇编[C];2009年
6 程备久;mail.hf.ah.cn);李展;mail.hf.ah.cn);朱苏文;mail.hf.ah.cn);李纯;mail.hf.ah.cn);李培金;mail.hf.ah.cn);谢传晓;mail.hf.ah.cn);;玉米对生突变体的遗传与分子标记研究[A];第八届全国激光生物学学术会议暨《激光生物学》创刊十周年庆祝会会议指南及论文摘要[C];2002年
7 许晓明;张荣铣;;水稻叶绿素缺乏突变体的吸收光能分配特性[A];中国植物生理学会全国学术年会暨成立40周年庆祝大会学术论文摘要汇编[C];2003年
8 林植芳;彭长连;徐信兰;林桂珠;张景六;;两个新的水稻缺叶绿素b突变体光合作用的热稳定性[A];中国植物生理学会第九次全国会议论文摘要汇编[C];2004年
9 魏玉波;梁乃亭;布哈丽且木;;水稻永绿突变体及应用价值[A];中国科协2005年学术年会论文集——核科技、核应用、核经济论坛[C];2005年
10 夏宗芗;邬键;甘建华;黄仲贤;;细胞色素b_5的一系列突变体的晶体结构及其与性质、功能的关系[A];第九次全国生物物理大会学术会议论文摘要集[C];2002年
相关重要报纸文章 前3条
1 记者 张克;我科学家发现水稻衰老调控分子机制[N];科技日报;2014年
2 钱海丰 编译;植物耐盐基因的研究[N];中国高新技术产业导报;2002年
3 记者 冯卫东;美发现能控制小鼠胖瘦的基因[N];科技日报;2007年
相关博士学位论文 前10条
1 李成;诱导超氧化物歧化酶错误折叠的因素及其分子机制[D];武汉大学;2012年
2 张子栋;透明颤菌血红蛋白及其突变体蛋白对芳香族污染物清除作用的实验研究[D];东北林业大学;2015年
3 Syed Noor Muhammad Shah;黄瓜品系9930诱导突变体的研究[D];西北农林科技大学;2015年
4 康乐群;家蚕新突变体4龄幼虫致死基因的定位克隆及功能研究[D];江苏科技大学;2015年
5 史贵霞;大豆子叶折叠突变体cco的转录组分析及相关基因的功能研究[D];南京农业大学;2014年
6 胡运高;直立重穗突变体的遗传分析、候选基因克隆与育种利用[D];四川农业大学;2015年
7 TAREK MOHAMED AHMED SOLIMAN(罗大力);通过γ-射线辐射处理菊花外植体筛选花色和花型突变体[D];中国农业大学;2014年
8 王濵;斑马鱼造血突变体的大规模筛选以及髓系过氧化物酶缺陷突变体smu681的基因定位克隆与功能研究[D];南方医科大学;2014年
9 刘逢举;陆地棉极短纤维突变体的遗传、精细定位与表达谱分析[D];南京农业大学;2010年
10 王旭;番茄rin突变体胎萌的生理机制及rin在胎萌中的作用[D];东北农业大学;2016年
相关硕士学位论文 前10条
1 李红;采用分子动力学模拟探究VWF-A1突变体G561S的亲和力变化机制[D];华南理工大学;2015年
2 谷慧英;芥菜开花整合子SOC1与开花抑制因子SVP、FLC蛋白相互作用[D];西南大学;2015年
3 蒋发明;斑马鱼消化器官突变体的遗传筛选和Ubel蛋白的原核表达纯化及抗体生产[D];西南大学;2015年
4 王帆;叶绿体体积和数目的改变对拟南芥抗逆性的影响[D];河北师范大学;2011年
5 丁正洁;拟南芥叶绿体J-蛋白突变体鉴定及功能初探[D];河北师范大学;2011年
6 朱玲;水稻长护颖突变体和条纹叶突变体的基因鉴定与qRT-PCR表达分析[D];四川农业大学;2015年
7 秦亚芝;一个水稻分蘖角度突变体的遗传分析与精细定位[D];四川农业大学;2015年
8 任云;一个水稻小粒矮秆突变体的遗传分析与基因定位[D];四川农业大学;2014年
9 李进;一份水稻叶尖枯萎突变体xynln的表型分析和基因定位[D];四川农业大学;2015年
10 陈华伟;一份辐射诱变玉米雄性不育突变体的遗传鉴定[D];四川农业大学;2015年
,本文编号:2160552
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2160552.html