miRNA160通过SIARF10对番茄叶片失水和果实发育的调控作用
[Abstract]:Auxin response factor (ARF), as a class of transcription factors, participates in many physiological and biochemical processes in plants by regulating downstream gene expression, and the transcriptional level of ARF is regulated by miRNA. Based on the research basis of previous and subject groups, the target gene SIARF10 of tomato miRNA160, SIARF16, SIARF17, miRN, is preliminarily clarified. A167 can regulate slARF6 and slARF8. in this study to further clarify the function of miRNA160 and miRNA167 regulating target gene AREs to participate in tomato growth and development. Using 35S:: mSIARF10-6 (the form of anti miRNA160 degradation), the effect of SIARF10 on the rate of water loss in tomato leaves was investigated, and the direct influence of ARF10 on the gas was determined. The water conductivity of tomato leaves was increased by pore development and aquaporin expression, and the effect of ARFs/miRNAs on the development of fruit peel in the early stage of tomato fruit development was studied by using DGT and gib-3 mutants. The cell division and expansion of ARFs regulated by miRNA160 and miRNA167 was preliminarily discussed in the regulation of auxin and gibberellin. The transgenic plants and T1 generation of the overexpression of miRNA160 have been obtained. It is found that the ARFs regulated by miRNA160 plays an important role in regulating the leaves of tomato. These studies will lay a foundation for further clarifying the biological regulation mechanism of ARF/miRNA and the mechanism of the growth and development of plants by auxin. The main results are as follows: 1. the use of mS The phenotypic analysis of IARF10 overexpressed transgenic tomato (anti miR160 degradation) leaves showed that the leaves were significantly narrower (long / wide), the stomata became larger, and the stomatal density became smaller. Usually narrow leaves had smaller water loss rates. However, compared with the wild type, the leaves of the 35S:mSIARF10-6 leaves showed greater leaf loss rate. During the process, 35S:mSIARF10-6 accumulated a higher ABA content, but the sensitivity of the exogenous ABA to the stomata was significantly higher than that in the wild type. However, the further analysis showed that the actual loss rate of the 35S:mSIARF10-6 leaves was different from that of the calculated water vapor loss depending on the pore water vapor loss. This indicates that there are other ways to influence the water loss of the 35S:mSIARF10-6 leaves. One step using aquaporins (AQPs) inhibitor HgCl2 treatment confirmed that 35S:mSIARF10-6 had higher AQP activity and had higher hydraulic conductivity. The above results showed that the increase of 35S:mSIARF10-6 water loss rate was the result of the co action of stomata and aquaporin activity,.2. based on RNA-sequencing showed that there were 5 AQP in 35S:mSIARF10-6. Family genes, 14 ABA synthesis and signal transduction related genes and 3 stomatal development related genes have significant changes, in which SIABI5 has ABA dependent transcription factor activity. The up-regulated AQP promoter analysis showed that the up regulation of AQP gene promoter contained ABRE or AuxRE promoter components. The promoter activity analysis test of the most significant three genes (SITIP1-1, SIPIP2; 4 and SINIP-type like) found that SIPIP2 containing AuxRE elements, the promoter region of 4 and SINIP-like, and SIPIP2, 4 and SITIP1 containing ABRE elements; 1 promoter region significantly enhanced the activity of the GUS enzyme activity in the 35S:mSIARF10-6 transgenic material and the yeast single The hybridization test confirmed that SIARF10 could be combined with the AuxRE promoter element in the AQP gene promoter, and the yeast single hybridization was carried out with the transcriptional factor SIAB15, which was significantly increased in the 35S:mSIARF10-6 expression, and proved to be associated with the ABRE promoter element in the AQP gene promoter. Therefore, the enhancement of 35S: mSIARF10-6 AQP expression may be on ARF10 and ABI5. However, through the transient expression of SIARF10 silencing and SIABI5 overexpression, it was found that down-regulation of SIARF10 could reduce the water loss rate of tomato leaves, and the overexpression of SIABI5 was significantly down regulated by 6h before water stress treatment. Therefore, the high water loss rate of 35S:mSIARF10-6 was not due to the effect of SIABI5, but the result of SIARF10's direct effect. It is shown that, although SIARF10 reduces water loss by regulating stomatal opening by increasing ABA synthesis and signal response, SIARF10 accelerates water loss by affecting the stomatal development and aquaporin activity. Therefore, miR160 regulated SIARF10 is of great significance for maintaining the water balance of leaves.3. using exogenous IAA to spray tomato GA deficiency. The loss of mutant (gib-3) and exogenous GA spraying tomato IAA signal pathway blocked mutant (DGT) fruit material. The anatomical results showed that IAA resulted in the thickening of the peel and the increase of the number of cells in the pericarp, while GA did not increase the number of cell layers. The RT-PCR study found that IAA treated gib-3 mutants as SIARF6, SIARF8, SIARF10, and expression levels decreased significantly. The expression level of SIARF6, SIARF8, SIARF10 and SIARF16 in DGT mutants was significantly up-regulated by GA, and the expression level of miRNAs decreased significantly in DGT mutants. These results showed that the expression of SIARF6, SIARF8, SIARF10, and SIARF6 was negatively correlated with the number of peel cell layers in the early stage of tomato fruit development. The fruit peel analysis of mSIARF10-6 transgenic tomato plants showed that over expression of mSIARF10 resulted in a significant decrease in the number of cell layers in fruit peels. The above results showed that miRNAs and the target gene ARFs mediated by GA and IAA may participate in the proliferation of fruit cells in the early stage of tomato fruit development.4. using Gateway technology to successfully construct miRNA160 super. The expression vector. The tomato miRNA160 precursor was joined with the strong promoter pB7WG2D, 1 carrier. The tomato transgenic plants were successfully obtained through the optimized tomato genetic transformation system. The transgenic tomato plants of the T1 generation were successfully verified by the fluorescence detection, molecular and protein level and other identification methods. The phenotype of 35S:: SImiR160 transgenic plants: the widen leaf width, the decrease of leaf cleft and the increase of leaf area. It suggests that miR160 plays an important role in regulating the development of tomato leaves. It provides a good test for the research of the mechanism of miRNA160 for the growth and development of tomato.
【学位授予单位】:沈阳农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S641.2
【相似文献】
相关期刊论文 前10条
1 余宏章;;番茄叶片上卷的原因及对策[J];农村百事通;2013年10期
2 陆家训;移植基因培育新番茄[J];农业科技通讯;1994年08期
3 吴正景,高文,魏秉培,苏维;氮素对番茄叶片生理活性的作用研究[J];河南科技大学学报(农学版);2003年04期
4 陈卓;张笑千;张冠宇;韩东海;曲英华;;番茄叶片几何特征的提取与分析[J];北方园艺;2010年15期
5 赵文杰;陈靠山;张鹏英;;发育对番茄叶片防御相关酶活性的影响[J];中国农学通报;2011年16期
6 陈凯利;李建明;贺会强;韩瑞锋;孙三杰;姚勇哲;;水分对温室盆栽番茄叶片光响应特性的影响[J];西北农林科技大学学报(自然科学版);2012年01期
7 李彦,罗盛国,刘元英,陈友,赵久明,姜伯文;硒对番茄叶片中谷胱甘肽过氧化物酶活性及产量和品质的影响[J];山东农业科学;1999年06期
8 徐幼平;徐秋芳;蔡新忠;;适于双向电泳分析的番茄叶片总蛋白提取方法的优化[J];浙江农业学报;2007年02期
9 李淼;李天来;;短期昼间亚高温对番茄叶片抗氧化酶活性的影响[J];沈阳农业大学学报;2009年02期
10 宋军兰;李东升;;番茄叶片厚度变化规律的比较解剖分析[J];浙江农业学报;2009年06期
相关会议论文 前10条
1 高洪燕;毛罕平;张晓东;周莹;;番茄叶片氮素反射光谱及高光谱图像的研究[A];中国农业工程学会2011年学术年会论文集[C];2011年
2 王冬梅;康立功;许向阳;李景富;;热胁迫对番茄叶片主要生理生化指标的影响[A];中国园艺学会第七届青年学术讨论会论文集[C];2006年
3 王丹;须晖;李天来;尹川;;连续变光对不同品种番茄叶片细胞膜系统的影响[A];农业工程科技创新与建设现代农业——2005年中国农业工程学会学术年会论文集第五分册[C];2005年
4 刘玉凤;李天来;齐明芳;;夜间不同低温处理及恢复对番茄叶片活性氧代谢的影响[A];中国园艺学会2010年学术年会论文摘要集[C];2010年
5 金志凤;景元书;申双和;李军;姚益平;;温室小气候与番茄叶片光合速率日进程分析[A];第二届长三角气象科技论坛论文集[C];2005年
6 刘玉凤;齐明芳;李天来;;番茄叶片叶绿体中水—水循环对低夜温响应的钙素缓解效应[A];中国园艺学会2012年学术年会论文摘要集[C];2012年
7 金志凤;景元书;李永秀;申双和;;日光温室内主要气候生态因子和番茄叶片净光合速率的梯度分布特征[A];全国农业气象与生态环境学术年会论文集[C];2006年
8 金志凤;袁德辉;冯涛;景元书;张寒;;温室小气候对番茄叶片净光合速率日进程分析[A];中国农学会农业气象分会2006年学术年会论文集[C];2006年
9 张国显;刘玉凤;李天来;;外源钙缓解夜间低温引起的番茄叶片光抑制的研究[A];中国园艺学会2013年学术年会论文摘要集[C];2013年
10 任婧祺;崔娜;;番茄叶片蛋白质组分析的双向电泳技术体系的建立和优化[A];中国园艺学会2010年学术年会论文摘要集[C];2010年
相关重要报纸文章 前8条
1 湖北省孝感市农业局高级农艺师 余宏章;番茄叶片为何上卷[N];河南科技报;2010年
2 刘春香 王来芳;番茄叶片发黄 寻因施治不慌[N];河北农民报;2006年
3 吕良才;棚室番茄叶片为啥常卷缩[N];山西科技报;2001年
4 保定定州市农牧局 王虎;棚室番茄卷叶为哪般[N];河北农民报;2009年
5 定州市农牧局 王虎;一棚室番茄卷叶为哪般[N];河北科技报;2009年
6 云淡;番茄不上色的原因及对策[N];新疆科技报(汉);2008年
7 勇;番茄的三种怪现象[N];云南科技报;2004年
8 河北省农科院植保所 孙茜 徐文亭;雨后暴晴警惕番茄遭高温烫伤[N];河北科技报;2013年
相关博士学位论文 前10条
1 张国显;外源钙缓解低夜温导致番茄叶片光抑制的机理[D];沈阳农业大学;2015年
2 曹逼力;硅缓解番茄(Solanum Lycopersicum L.)干旱胁迫的机理[D];山东农业大学;2015年
3 王剑锋;基质培番茄的钾素营养生理响应与快速检测技术研究[D];中国农业大学;2016年
4 王俊玲;番茄光合的光谱效应研究[D];河北农业大学;2015年
5 刘欣;miRNA160通过SIARF10对番茄叶片失水和果实发育的调控作用[D];沈阳农业大学;2016年
6 王彦杰;番茄叶片叶黄素部分缺失下不同光保护途径对干旱胁迫的响应[D];浙江大学;2007年
7 刘志勇;热胁迫下番茄多胺代谢与基因差异表达分析[D];中国农业科学院;2007年
8 贺忠群;丛枝菌根真菌(AMF)提高番茄耐盐性机制的研究[D];西北农林科技大学;2007年
9 王华森;番茄叶片GDP-甘露糖焦磷酸化酶基因(GMPase)的cDNA克隆及功能分析[D];山东农业大学;2007年
10 王丽燕;番茄GDP-L-半乳糖磷酸酶(GGP)基因的克隆、表达和功能分析[D];山东农业大学;2012年
相关硕士学位论文 前10条
1 于世欣;不同地区土壤养分含量与番茄叶片养分含量、产量的关系[D];山东农业大学;2015年
2 刘红玉;基于交互作用的番茄叶片氮磷钾含量的多元信息检测方法[D];江苏大学;2016年
3 邹强;基于高光谱图像技术的番茄叶片和植株抗氧化酶系统活性测定研究[D];浙江大学;2012年
4 刘婷婷;模拟酸雨胁迫下番茄叶片的基因差异表达研究[D];福建农林大学;2010年
5 边江;番茄叶片动态光合的光响应特性研究[D];河北农业大学;2011年
6 周天恩;意大利观赏番茄引种栽培研究[D];福建农林大学;2007年
7 毕珂嘉;番茄叶片挥发性物质的鉴定及相关基因表达分析和番茄核心种质果实代谢组学分析[D];华中农业大学;2014年
8 费玉娟;江苏省设施番茄寡照气象灾害预警技术的研究[D];南京信息工程大学;2012年
9 王晓;番茄LeGSH1基因的克隆及在耐镉性中的功能分析[D];山东农业大学;2013年
10 刘阳;番茄MBF1转录辅激活因子基因的克隆载体的构建及转化番茄[D];重庆大学;2007年
,本文编号:2165099
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2165099.html