AM真菌提高枸杞耐盐性的机制研究
[Abstract]:In this study, the diversity of arbuscular mycorrhizas (AM) fungi in Ningxia saline soil was investigated, and the main soil factors affecting the changes of AM Fungi Community in saline soil were identified. The relationships among AM fungi community, soil factors and plant species were expounded. Physiological and biochemical mechanisms of AM fungi inoculation on improving salt tolerance of Lycium barbarum were studied. The potential of AM fungi inoculation as biofertilizer to improve the growth and quality of Lycium barbarum under salt stress was evaluated. The main conclusions are as follows: 1. The diversity of AM Fungi Community in summer saline soil was identified in the rhizosphere saline soil of Lycium barbarum L. and Elaeagnus angustifolia L. in Ningxia. 33 species of AM fungi belonging to 10 genera and 7 families were identified. Among them, the number of AM fungi in Glomeraceae was the largest, including 13 species, Aclospora and Glomusau were the richest. Septoglomus constrictum was the highest abundant species, and S. constrictum and Funneliformis coronatum were the common species, indicating that there was a high diversity of AM fungal communities in Ningxia saline soil. The Shannon, Simpson and Evenness indices of AM Fungi Community in Lycium barbarum rhizosphere were also significantly higher than those in Elaeagnus angustifolia L. in 12 species of Elaeagnus angustifolia, suggesting that host could affect the structure of AM fungi community. 2. The effect of soil factors on the diversity of AM Fungi Community in Ningxia saline soil was negatively correlated with the diversity index of AM fungi, suggesting that salt Diversity. However, soil fertility indices (available potassium, available phosphorus, available nitrogen and total phosphorus) were positively correlated with AM fungi diversity, indicating that soil fertility increased AM fungi diversity. Soil pH was positively correlated with spore abundance, indicating that alkaline soil was conducive to AM fungi sporulation. The results showed that soil factors could significantly affect the structure of AM fungi community. 3. The effects of AM fungi on hormone regulation and growth of Lycium barbarum L. Under salt stress, IAA content in leaves and roots of Lycium barbarum inoculated with Glomus versiform increased by 59.0% and 39.1%, respectively, and ABA content in leaves increased by 13.8%. Covariance analysis showed that G. versiform directly affected the contents of IAA and ABA in Lycium barbarum. By participating in the regulation of these two hormones, the biomass of Lycium barbarum was increased by 1.75 times, the total absorption and active absorption area of root system were increased by 2.17 and 2.66 times, respectively. 3.6%, 57.8% and 86.6% showed that the growth of Lycium barbarum inoculated with G.versiform was better. Therefore, G.versiform significantly alleviated the inhibition of salt stress on the growth of Lycium barbarum, especially promoted the growth and development of Lycium barum roots, and ensured the absorption of water and nutrients of Lycium barum. 4. AM was true under salt stress. The effects of G. versiform on chlorophyll, photosynthesis and chlorophyll fluorescence of Lycium barbarum L. were studied under salt stress. The results showed that G. versiform increased the chlorophyll content of Lycium barbarum L. by 25.7% under non-salt stress. The chlorophyll content of Lycium barum L. was not affected by salt stress, indicating that Lycium barbarum L. had stronger chlorophyll content. The photosynthesis and chlorophyll fluorescence of Lycium barbarum L. were significantly decreased under salt stress. However, the photosynthetic rate and transpiration rate of Lycium barbarum L. inoculated with G. versiform at 100 mM increased by 56.0% and 28.7% respectively, and the intercellular CO2 concentration decreased by 9.0%. Electron transfer efficiency (PSII), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qN) of Lycium barbarum L. were significantly higher than those of the control, indicating that G. versiform could improve the photosynthetic capture ability of Lycium barbarum L. and help it distribute energy reasonably, so as to ensure the photosynthesis of Lycium barum L. under salt stress and protect the photosynthetic system from photooxidation damage.5. Effects of AM fungi on antioxidant and osmotic regulation of Lycium barbarum L. Under salt stress, the effects of G. versiform on the activities of antioxidant enzymes, osmotic regulators and water potential of Lycium barum L. were studied. The results showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) of Lycium barum L. inoculated with AM fungi increased by 11.0% and 7.6% respectively. Catalase (CAT) activity increased by 2.85 times under 100 mM salt stress, indicating that G. versiform could increase the activity of antioxidant enzymes and reduce the damage of membrane system in Lycium barbarum. At the same time, G. versiform increased the content of soluble sugar (32.3%) and reducing sugar (33.6%) and decreased the content of starch (23.8%) in Lycium barbarum, suggesting that G. versiform could promote the hydrolysis of starch in Lycium barum barbarum. The above results showed that G. versiform could increase the activity of antioxidant enzymes and osmotic regulation of Lycium barbarum L. under salt stress. 6. The effect of AM fungi on ultrastructure of Lycium barbarum L. leaves under salt stress was evaluated in this study. The chloroplast thylakoids and stroma lamellae were separated and destroyed seriously by salt stress. Compared with the control, the isolation degree of mesophyll cytoplasmic wall of Lycium barbarum inoculated with G. versiform was lighter, the chloroplast was relatively intact and accumulated less oil droplets, and the matrix and thylakoids were intact and orderly. The results showed that G. versiform effectively protected the structure of Lycium barbarum leaf cells under salt stress. 7. Effects of AM fungi inoculation on the nutritional components of Lycium barbarum leaves under salt stress. Rhizophagus irregularis was inoculated in Lycium barbarum under salt stress. The effects of R. irregularis on the nutritional components of Lycium barbarum leaves were determined. Irregularis increased the regeneration rate of Lycium barbarum buds by 79.0% and 113.0% under non-stress and salt stress, respectively. Compared with the control, inoculation with R. irregularis increased the rutin content of Lycium barbarum leaves by 96.1% and 77.5%, and the acid polysaccharide content of Lycium barum leaves by 66.7% and 103.1% respectively under salt stress. The results showed that R. irregularis could significantly increase the regeneration rate of Lycium barbarum buds and the nutritional components of Lycium barbarum leaves under salt stress.
【学位授予单位】:西北农林科技大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S567.19
【相似文献】
相关期刊论文 前10条
1 郭忠勇;田长彦;胡明芳;吕昭智;;不同形态磷肥对棉花生长和AM真菌接种效应的影响[J];干旱区研究;2008年02期
2 李晋荣;洪坚平;郝鲜俊;陈芬;;不同磷水平下接种AM真菌对矿区玉米生长的影响[J];山西农业科学;2013年08期
3 王红新;李富平;国巧真;郭绍义;;AM真菌生长发育影响因素及其对植物作用的研究[J];土壤肥料;2006年01期
4 杨瑞红;刘润进;刘成连;王永章;李培环;原永兵;;AM真菌和水杨酸对草莓耐盐性的影响[J];中国农业科学;2009年05期
5 李桂贞;杨富裕;张德罡;周青平;代艳;韩志林;;青海燕麦根区AM真菌的空间分布研究[J];西北农业学报;2008年05期
6 薛会英;张永青;彭岳林;;藏北草原主要植物AM真菌的初步研究[J];山地学报;2007年03期
7 郭绍霞;陈丹明;刘润进;;盐水胁迫下接种AM真菌对牡丹幼苗抗氧化酶活性的影响[J];园艺学报;2010年11期
8 姜国金;许兰珍;杨晓红;王容春;朱邦松;;泸州荔枝果园AM真菌菌根及孢子数量调查与分析[J];安徽农业科学;2007年22期
9 马亚斌;李伟;徐萌;姜准;郭绍霞;;AM真菌对盐胁迫下百合生长和光合作用的影响[J];青岛农业大学学报(自然科学版);2014年03期
10 郭绍霞;张玉刚;尹新路;;AM真菌对牡丹实生苗矿质营养和生长的影响[J];青岛农业大学学报(自然科学版);2010年03期
相关会议论文 前10条
1 冯永坤;朱宁;程阳;王晓静;冯固;;AM真菌对不同磷效率基因型玉米生长和磷营养的效应[A];第五次全国土壤生物和生物化学学术研讨会论文集[C];2009年
2 李晋荣;洪坚平;郝鲜俊;陈芬;张丽;;不同磷水平下接种AM真菌对矿区玉米光合性能的影响[A];面向未来的土壤科学(中册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年
3 刘冰江;李敏;刘润进;;AM真菌对棉花根内防御性酶活性的影响[A];中国植物病理学第七届青年学术讨论会论文集[C];2005年
4 张霁;郭兰萍;刘大会;黄璐琦;;干旱胁迫下AM真菌对苍术幼苗生长及保护酶活性的影响[A];2010年全国中药学术研讨会论文集[C];2010年
5 刘春卯;贺学礼;徐浩博;张淑容;牛凯;;蒙古沙冬青AM真菌物种多样性研究[A];生态文明建设中的植物学:现在与未来——中国植物学会第十五届会员代表大会暨八十周年学术年会论文集——第2分会场:植物生态与环境保护[C];2013年
6 刘冰江;李敏;刘润进;;AM真菌对棉花生长和黄萎病的影响[A];中国植物病理学会2006年学术年会论文集[C];2006年
7 赵萌;李敏;王淼焱;刘润进;;AM真菌克服作物连作障碍的潜力[A];山东农业微生物技术学术研讨会论文集[C];2006年
8 石兆勇;李敏;刘润进;;栽培基质对AM真菌和西瓜生长发育的影响[A];第九届全国土壤微生物学术讨论会论文摘要[C];2001年
9 刘翠花;张红锋;李菊;大次卓嘎;钟国辉;张澈;;AM真菌对青稞抗旱性影响的机理研究[A];2006中国科协年会农业分会场论文专集[C];2006年
10 刘翠花;张红锋;李菊;大次卓嘎;钟国辉;张澈;;AM真菌对青稞抗旱性影响的机理研究[A];提高全民科学素质、建设创新型国家——2006中国科协年会论文集[C];2006年
相关博士学位论文 前6条
1 刘雪琴;纳米ZnO/AM真菌对玉米的生物效应及作用机理研究[D];西南大学;2015年
2 王同智;不同复垦方式下露天矿排土场AM真菌、宿主植物群落及修复作用的研究[D];内蒙古大学;2014年
3 刘洪光;AM真菌提高枸杞耐盐性的机制研究[D];西北农林科技大学;2016年
4 孙学广;AM共生机制研究:AM真菌与植物根系的识别及AM功能相关基因[D];西北农林科技大学;2014年
5 朱晓琴;AM真菌对刺槐光合固碳和能源性状的影响机制研究[D];西北农林科技大学;2014年
6 王倡宪;AM真菌对设施黄瓜幼苗生长及抗枯萎病能力研究[D];中国农业大学;2005年
相关硕士学位论文 前10条
1 王晓乾;蒙古沙冬青AM真菌物种多样性演替规律研究[D];河北大学;2015年
2 乔亚君;AM真菌与施硒量对丹参幼苗生长及品质的影响[D];河北大学;2015年
3 于美迪;AM真菌与苜蓿共生对土壤中阿特拉津降解特性的研究[D];黑龙江大学;2015年
4 孙玉芳;盐碱胁迫下AM真菌对沙枣苗木生长的影响[D];黑龙江大学;2015年
5 牛丽纯;沙枣根瘤微生物及根系内AM真菌多样性研究[D];黑龙江大学;2014年
6 王健;AM真菌与紫穗槐形成丛枝菌根过程中差异蛋白质图谱库的构建[D];黑龙江大学;2012年
7 李媛媛;不同紫花苜蓿基因型对AM真菌的响应以及AM真菌扩繁的研究[D];兰州大学;2013年
8 林双双;AM真菌调节紫花苜蓿对重金属元素Cd的吸收和分配策略[D];兰州大学;2013年
9 孔祥仕;抑制消减杂交技术筛选AM真菌与紫穗槐共生相关基因[D];黑龙江大学;2013年
10 罗佳佳;施肥对垂穗披碱草根系内AM真菌群落功能的影响[D];兰州大学;2016年
,本文编号:2184403
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2184403.html