当前位置:主页 > 硕博论文 > 农业博士论文 >

森林经营对东北林区主要森林类型蓄水保土功能的影响

发布时间:2018-08-18 19:55
【摘要】:针对天然林保护工程实施后,东北林区森林经营方式发生改变为研究背景,以天然林保护工程重点实施东北林区的典型森林类型为主要研究对象,采用野外调查与室内试验相结合的研究方法,对比研究了大小兴安岭主要森林类型的水源涵养能力;长白山东部山地不同配置落叶松混交林的水源涵养能力和土壤可蚀性;大兴安岭不同经营措施条件下典型森林类型的水源涵养功能;运用层次分析法优化配置小流域水源涵养林的模式。首先对比分析大小兴安岭典型类型林分水源涵养能力,结果表明:(1)大兴安岭林区森林林冠层截留率较小兴安岭的主要森林类型维持相对较高的水平;特别是草类兴安落叶松林表现出较强的林冠截留能力。5种类型灌木林的林冠截留率的平均值变化范围为11.99%~24.86%,其中,以榛子灌丛的林冠截留率最高,接近同区内乔木林的平均水平。(2)小兴安岭各林分枯落物层最大持水能力变化范围为25.66~136.82 t/hm2之间,有效持水能力的变化范围则在17.17~67.00 t/hm2之间,均表现为落叶松人工林最强,依次分别为落叶松白桦混交林、红松人工林、蒙古栎天然林、樟子松人工林和水曲柳天然林。大兴安岭各林分枯落物最大持水率的变化范围在578.03%~747.22%之间,其中杜鹃白桦林的最大持水率最高,依次分别为草类落叶松林、杜鹃落叶松林、柞木落叶松林和蒙古栎天然林。(3)小兴安岭6种林分土壤有效持水量变化范围为267.30~438.56 1/hm2,水曲柳天然林土壤有效持水能力最好,大兴安岭不同林分土壤有效持水能力的变化范围仅为340.00~632.15 t/hm2,其中以杜鹃白桦林表现出相对较强的水源涵养功能。(4)对比大、小兴安岭16种乔灌林分的水源涵养功能,表明大兴安岭主要森林类型的水源涵养功能综合能力最强,具体表现为在林冠层截留和枯落物蓄水能力上占明显优势;小兴安岭主要森林类型水源涵养功能主要体现在土壤层最大持水能力上占有优势;灌木林具有较强的水源涵养功能,表现为土壤层有效持水能力占明显优势。其次对帽儿山实验林场落叶松人工混交林的灌草层、枯落物层和土壤层的水文功能和土壤可蚀性的评价指标进行分析。研究表明:(1)灌木层现存量变化范围为0.51~0.73t/hm2,草本层现存量变化在0.20~0.62t/hm2之间,最大持水量变化范围为2.31~4.97t/hm2之间,均以落叶松黄菠萝混交林最大。(2)枯落物现存量范围在6.23~9.13t/hm2之间,落叶松水曲柳混交林最大。4种林分最大持水量大小排序为:落叶松水曲柳混交林(53.50t/hm2)落叶松黄菠萝混交林(47.82t/hm2)落叶松纯林(45.02t/hm2)落叶松胡桃楸混交林(36.64t/hm2)。(3)土壤最大持水量范围在2927.74~3454.31t/hm2之间。有效持水量大小依次为:落叶松黄菠萝混交林(282.24t/hm2)落叶松纯林(275.83t/hm2)落叶松胡桃楸混交林(219.05t/hm2)落叶松水曲柳混交林(143.01t/hm2)。(4)通过土壤结构二维三系图可以得出,在表层土壤中(0-20cm),落叶松胡桃楸混交林较其他林分类型更加接近理想结构,主要是通过增加固相比例、减小液相比例实现向理想点的趋近。(5)0~10cm土层内落叶松胡桃楸混交林土粒的静水崩解速率最低(2%~4%)。4种林分土壤水稳性指数差异显著(P0.05),范围在0.85~0.97之间,落叶松胡桃楸混交林最高(0.97),可蚀性最低。(6)0~20cm土壤范围内干筛团聚体以2~5mm粒级团聚体为主,PA0.25均值排序为:落叶松胡桃楸混交林(91.64%)落叶松纯林(91.08%)落叶松水曲柳混交林(85.10%)落叶松黄菠萝混交林(80.42%)。落叶松胡桃楸混交林能显著增加土壤水稳团聚体的PAo.25、降低团聚体破坏率(P0.05)。(7)通过EPIC评价模型对4种林分土壤的可蚀性因子K值进行计算得出,K值范围在0.294~0.337之间,落叶松水曲柳混交林可蚀性最低。从而总结出该经营条件下,涵养水源潜力最大的是落叶松纯林,持水能力最强的是落叶松黄菠萝混交林;落叶松胡桃楸混交林的可蚀性最低,抗侵蚀能力最强。对大兴安岭阿木尔林业局抚育间伐经营措施条件下的白桦天然林、樟子松天然林和落叶松天然林的林分结构、灌木层和草本层的生物多样性、枯落物层储量及持水能力、土壤层物理性质及涵养水源能力等指标进行了研究。研究结果表明:(1)常规抚育间伐能促进林木胸径和树高的生长,白桦天然林间伐后白桦天然林密度降低50%,林分平均高增加0.4m,平均胸径增加1.5cm,林分蓄积量没有下降。过度间伐的落叶松天然林平均胸径和树高增加明显,林分蓄积量随着间伐强度的增加而下降。(2)抚育间伐后,白桦天然林灌木层和草本层的物种丰富度指数及Shannon-Wiener指数都有提高;落叶松天然林多次抚育间伐灌木层和草本层的物种丰富度指数及Shannon-Wiener指数明显下降,植物种类也相应减少。(3)抚育间伐对林分内部枯落物层的储量和分布产生影响,间伐后白桦天然林枯落物储量下降20%,樟子松天然林枯落物储量下降13.27%,落叶松天然林二次间伐导致枯落物储量下降明显。(4)林分枯落物组成对枯落物层持水能力贡献力不同,白桦天然林枯落物组成以落叶为主,未分解层白桦落叶最大持水量为枯枝最大持水量的2.58-3.65倍,半分解层为1.27-2.92倍。樟子松天然林和落叶松天然林枯落物组成主要由落叶为主,枯落物持水能力为落叶树皮枯枝球果。(5)抚育间伐后能够对土壤物理性质起到改良的作用,对比间伐前后林分土壤容重和孔隙度,土壤容重呈下降趋势,非毛管孔隙度增加明显。运用层次分析法对大兴安岭新林林业局小流域水源涵养林植被的空间配置结构进行优化分析,初步确定该流域水源涵养林植被类型优化配置结构为蒙古栎天然林占24.86%、杜鹃落叶松林占16.30%、柞木落叶松林占44.49、杜鹃白桦林占10.88、草类落叶松林占3.47。优化后试验流域整体水源涵养能力增加了13.56万t,与现状相比相对提高7.0%。数据证明优化调整后达到试验小流域水源涵养林最优空间配置结构。研究的结果不仅可以为东北林区森林经营森林蓄水固土能力评估提供参考和借鉴,还可以为林业管理部门提供森林经营策略制定提供数据支持和理论服务。
[Abstract]:Aiming at the change of forest management mode in Northeast Forest Region after the implementation of natural forest protection project, taking the typical forest types in Northeast Forest Region as the main object of study, the water of main forest types in big and small Xing'an Mountains was comparatively studied by combining field investigation with laboratory experiment. Source conservation capacity; water conservation capacity and soil erodibility of Larix gmelinii mixed forests with different allocations in mountainous areas of Eastern Changbai Mountains; water conservation function of typical forest types under different management measures in Daxing'an Mountains; optimization of allocation model of water conservation forests in small watershed by using analytic hierarchy process. The results showed that: (1) the canopy interception rate of forest in Daxing'an Mountains was relatively higher than that of the main forest types in Xing'an Mountains, especially for the grasses, Larix gmelinii forest, which showed stronger canopy interception capacity. The average canopy interception rate of five shrub types ranged from 11.99%. Among them, the canopy interception rate of hazelnut shrub was the highest, which was close to the average level of arbor forest in the same area. (2) The maximum water-holding capacity of litter layers ranged from 25.66 t/hm2 to 136.82 t/hm2, and the effective water-holding capacity ranged from 17.17 t/hm2 to 67.00 t/hm2. Larch-Betula mixed forest, Korean pine plantation, Mongolian oak natural forest, Pinus sylvestris Plantation and Fraxinus mandshurica natural forest were the next. The maximum water holding capacity of litter ranged from 578.03% to 747.22% in the Daxing'an Mountains. The highest water holding capacity of Rhododendron-Betula platyphylla forest was in the order of herbaceous larch forest, Rhododendron-larch forest. Oak Larch Forest and Quercus mongolica Natural Forest. (3) The range of soil effective water-holding capacity of 6 stands in Xiaoxing'an Mountains ranged from 267.30 to 438.561/hm2, and Fraxinus mandshurica Natural Forest had the best soil effective water-holding capacity. The range of soil effective water-holding capacity of different stands in Daxing'an Mountains was only 340.00 to 632.15 t/hm2. (4) The water conservation function of 16 Arbor-shrub forests in Xiaoxing'an Mountains was stronger than that of other forests, indicating that the main forest types in Daxing'an Mountains had the strongest comprehensive water conservation function, which was manifested by their dominance in canopy interception and litter storage capacity. The shrub forest has a strong water conservation function, showing that the effective water holding capacity of the soil layer is dominant. Secondly, the shrub and grass layer, litter layer and soil layer hydrological function and soil erodibility evaluation index of Larix gmelinii plantation in Maoershan experimental forest farm are introduced. The results showed that: (1) The change range of shrub layer stock was 0.51-0.73 t/hm2, herb layer stock was 0.20-0.62 t/hm2, and the maximum water-holding capacity was 2.31-4.97 t/hm2. Larch-yellow-pineapple mixed forest was the largest. (2) The litter stock ranged from 6.23 t/hm2 to 9.13 t/hm2, larch-manchurian ash mixed forest was the largest. The order of the maximum water holding capacity of the four stands was: Larch mixed forest (53.50t/hm2) Larch yellow pineapple mixed forest (47.82t/hm2) Larch pure forest (45.02t/hm2) Larch mixed forest (36.64t/hm2). (3) The maximum soil water holding capacity ranged from 2927.74 t/hm2 to 3454.31t/hm2. Larch-Juglans mandshurica mixed forest (219.05 t/hm2) Larch-Manchuria mandshurica mixed forest (143.01 t/hm2). (4) In the surface soil (0-20 cm), Larch-Juglans mandshurica mixed forest (275.83 t/hm2) Larch-Juglans mandshurica mixed forest (219.05 t/hm2) Larch-Manchuria mandshurica mixed forest (143.01 t/hm2). (4) Through the two-dimensional three-series diagram of soil structure, it can be concluded that Larch-Juglans mandshurica mixed forest is closer to the ideal structure than other Soil water stability index of larch-juglans mandshurica mixed forest was the lowest (2%-4%) in 0-10 cm soil layer. The difference of soil water stability index among the four stands was significant (P 0.05), the range was 0.85-0.97, and the larch-juglans mandshurica mixed forest was the highest (0.97), and the erodibility was the lowest (P 0.05). 6) Dry-screened aggregates in 0-20 cm soil ranged from 2-5 mm to 5 mm, and PA 0.25 was in the order of 91.64% larch-juglans mandshurica mixed forest (91.08%) pure larch-manchurian ash mixed forest (85.10%) larch-yellow pineapple mixed forest (80.42%). Reducing aggregate damage rate (P 0.05). (7) By EPIC evaluation model, the soil erodibility factor K values of the four forest soils were calculated. The K values ranged from 0.294 to 0.337, and the erodibility of the mixed forest of Larix gmelinii and Fraxinus mandshurica was the lowest. Larch-yellow pineapple mixed forest; Larch-Juglans mandshurica mixed forest has the lowest erosion resistance and the strongest erosion resistance. The structure of natural birch forest, natural forest of Pinus sylvestris var. mongolica and natural larch forest, the biodiversity of shrub layer and herb layer, litter layer reserves and litter layer under the condition of thinning management in Amur Forestry Bureau of Daxing'an Mountains The results showed that: (1) Routine tending and thinning could promote the growth of DBH and tree height. After thinning, the density of Betula platyphylla natural forest decreased by 50%, the average stand height increased by 0.4 m, the average DBH increased by 1.5 cm, and the stand volume did not decrease. The average DBH and tree height of natural Larix gmelinii forest increased significantly, and the stand volume decreased with the increase of thinning intensity. (2) After thinning, the species richness index and Shannon-Wiener index of shrub and herb layers of natural Betula platyphylla forest were increased, and the species of shrub and herb layers were increased. Richness index and Shannon-Wiener index decreased significantly, and plant species decreased correspondingly. (3) Intermediate thinning had an effect on litter storage and distribution within the stand. Litter storage of Betula platyphylla natural forest decreased by 20%, litter storage of Pinus sylvestris var. mongolica natural forest decreased by 13.27% and litter storage of Larix gmelini natural forest caused by secondary thinning. (4) The litter composition of natural Betula platyphylla forest was mainly composed of deciduous leaves. The maximum water holding capacity of deciduous leaves of Uncomposed Betula platyphylla was 2.58-3.65 times of the maximum water holding capacity of litter, and that of semi-decomposed layer was 1.27-2.92 times. (5) thinning can improve soil physical properties. Compared with the stand soil bulk density and porosity before and after thinning, the soil bulk density showed a downward trend, and the non-capillary porosity increased significantly. The spatial distribution structure of water conservation forest vegetation was optimized and analyzed. The optimal distribution structure of water conservation forest vegetation types in the watershed was determined as Mongolian oak natural forest accounting for 24.86%, azalea larch forest accounting for 16.30%, oak larch forest accounting for 44.49, Rhododendron birch forest accounting for 10.88, grass larch forest accounting for 3.47. The data prove that the optimal spatial allocation structure of water conservation forest in the experimental small watershed can be achieved after optimization and adjustment. The results can not only provide reference and reference for the evaluation of water and soil conservation capacity of forest management in Northeast China, but also provide forest management departments with forest management. Strategy formulation provides data support and theoretical services.
【学位授予单位】:东北林业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S714.7

【相似文献】

相关期刊论文 前10条

1 高贤平;;东北林区蜂群室外越冬法[J];中国养蜂;1985年05期

2 李彤;姜岚;;东北林区林蛙的人工养殖[J];中国林副特产;1987年01期

3 周以良;马克平;;中国东北林区草地的合理经营与利用[J];草业科学;1992年01期

4 宋宝安,陈祥振;东北林区社会治安的情况及其对策[J];当代生态农业;1997年Z1期

5 王长富;东北林区当前必须考虑的几个问题[J];林业经济问题;2001年05期

6 张建国;;把握形势 促进发展——兼论东北林区的改革与发展[J];中国林业经济;2006年05期

7 刘丽萍;许俊杰;杜江;;东北林区“两危”的现状分析及对策选择[J];学术交流;2008年11期

8 袁畅彦;;东北林区产业选择分析[J];北方经济;2008年16期

9 翟勇;;依法保护东北林区生态系统的战略意义[J];林业经济;2009年11期

10 ;明天更美好——喜看东北林区新面貌[J];中国林业;2010年21期

相关会议论文 前1条

1 任军;马志林;;东北林区退耕还林工程中存在技术问题浅析[A];中国北方退耕还林工程建设管理与效益评价实践[C];2008年

相关重要报纸文章 前10条

1 刘新;东北还有多少大森林[N];科技日报;2003年

2 记者 林东升;东北林区农民收入四成来自林业[N];农民日报;2003年

3 记者 殷耀 丁铭 新华社记者 姜在忠;可采资源几近枯竭[N];新华每日电讯;2003年

4 魏静 记者 于宁;为东北林区改革探索成功路[N];吉林日报;2006年

5 记者 殷耀 丁铭;东北林区人口向外流动[N];新华每日电讯;2003年

6 本报记者 范建;东北林区升起一颗绿色新星[N];科技日报;2010年

7 新华社记者 姜在忠 殷耀 丁铭;东北林区:“人火”猛于“天火”[N];新华每日电讯;2003年

8 本报记者 范建;凭良知 夹缝中挤出一条路[N];科技日报;2010年

9 任鹏飞;东北一些林区,仍在乱砍滥伐和蚕食林地[N];新华每日电讯;2006年

10 本报记者 王胜男;为东北林区探路森林科学经营[N];中国绿色时报;2010年

相关博士学位论文 前2条

1 夏祥友;森林经营对东北林区主要森林类型蓄水保土功能的影响[D];东北林业大学;2016年

2 刘汉章;东北林区森工企业虚拟经营模式研究[D];东北林业大学;2010年

相关硕士学位论文 前3条

1 王斌;东北地区NPP和NBP的定量模拟研究[D];东北林业大学;2015年

2 袁琳 ;GIS在东北林区社会经济发展中的应用研究[D];北京林业大学;2005年

3 高慧淋;东北林区主要针叶树种相容性含碳量预估模型[D];东北林业大学;2014年



本文编号:2190517

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2190517.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c67f2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com