中国枫香树遗传多样性及谱系地理研究
[Abstract]:Liquidambar formosana Hance has a long evolutionary history as a tertiary relic tree species widely distributed in subtropics. Under the background of global climate change, Liquidambar formosana Hance has become one of the hotspots in biodiversity conservation. It is of great significance to study the characteristics and causes of distribution pattern of Liquidambar formosana. The results not only provide a scientific basis for the formulation of conservation strategy of genetic resources of Liquidambar formosana, but also benefit for the scientific management and sustainable utilization and development of genetic resources of Liquidambar formosana. The genetic diversity, pedigree geographic structure and population dynamics of Liquidambar formosana in natural distribution were studied. Based on the existing geographic and climatic data, the distribution patterns of Liquidambar formosana in different periods were reconstructed by using Biomod2 species distribution model. The main results were as follows: (1) This study was conducted from 802 Unigenes of Liquidambar formosana. A total of 10 645 potential SSR marker loci were identified, with an average frequency of 13.22% per 5.28 kb. The main type of SSR duplication in transcriptome was dinucleotide duplication. A total of 14 pairs of polymorphic SSR primers were developed based on transcriptome data. The results showed that the minimum sampling number of Liquidambar formosana population should be 17-26 individuals, and the sampling interval should be more than 50 m. (2) 11 loci were selected from 14 SSR loci, and genetic diversity of 25 populations of Liquidambar formosana was studied. A total of 67 alleles were detected at 11 loci, and the average number of alleles (Na) was observed. The average number of effective alleles (Ne) was 1.9266, the average Shannon information index (I) was 0.8178, and the average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.4090 and 0.4322, respectively. Liquidambar formosana had moderate level of genetic diversity (He = 0.399), among which the Xingyi (XY) population in Guizhou had the highest genetic diversity (He = 0.469). The genetic diversity of Qinba and Guizhou populations in southwest China was the highest (He=0.435), followed by the Dabie Mountains and surrounding hilly and coastal areas. However, the genetic diversity and heterozygote deletion were the lowest in central China. In hot spots with abundant diversity, low genetic diversity of marginal populations may be caused by geographic isolation or founder effect. There was moderate genetic differentiation in Liquidambar formosana population (Fst = 0.0757), and Mantel test showed that there was no significant correlation between population genetic variation and population geographic distance (P 0.05), indicating that geographic isolation did not exist. Population genetic analysis showed that genetic variation of Liquidambar formosana mainly existed among individuals within the population. Therefore, tree selection would be one of the effective methods for genetic improvement by natural variation. UPGMA clustering results showed that 25 populations were divided into three groups with principal components. The results of PCoA and Structurure were identical. (3) Two hundred and fifty-one individuals from 25 populations of Liquidambar formosana were sequenced by using four chloroplast spacer fragments (cpDNA). Based on the integrated 2 732 BP data, 20 polymorphic loci were detected and 20 haplotypes were obtained, 10 of which were specific to a certain population, and 18 populations had one of them. The haplotype of L. formosana was higher than that of L. formosana (Ht = 0.909 + 0.0192), but the average genetic diversity within the population was lower (Hs = 0.323 + 0.0553). The variation of haplotype mainly occurred among populations (Fst = 0.73012), and the low genetic diversity within populations was probably due to the limited gene flow (Nm = 0.18). The haplotype polymorphism Hd was 0.88762, and the total nucleotide polymorphism was 0.00144. Among them, Pingxiang (PX) population in Guangxi had the highest haplotype polymorphism (Hd = 0.75556) with five haplotypes, and Jian'ou (JO) population in Fujian had the highest nucleotide polymorphism (pi = 0.00120). Molecular analysis of variance (AMOVA) showed that most of the chloroplast genetic variations existed among Liquidambar formosana populations (75.34%) and were significantly higher than those within the population (24.66%). Mantel test showed that there was no geographic isolation among Liquidambar formosana populations (P 0.05), and neutral test and mismatch analysis showed that there was no geographic isolation among Liquidambar formosana populations. Haplotype H4 (50/251), followed by H1 (42/251) and H5 (32/251), accounted for 49.4% (124/251) of the total number of individuals with these three haplotypes, and H4 and H1 were the most widely distributed haplotypes. The results of haplotype analysis showed that there might be many refuges for Liquidambar formosana, such as Pingxiang in Guangxi (PX), Xingyi in Guizhou (XY), Huangshan in Anhui (HSAH) in the southwest, and Jian'ou in Fujian (JO) in the east. The common ancestor time of Liquidambar formosana population calculated by loose molecular clock was 10.30 MY. A million years ago (95% HPD: 9.74-15.28), it belonged to the middle and late Tertiary, and the reason of differentiation was the Tertiary geological and climatic events. (4) The geographical distribution pattern of Liquidambar formosana in different historical periods was reconstructed by using 10 species distribution models of Biomod2. The results showed that the optimal distribution area of Liquidambar formosana was consistent with its existing distribution area. The potential geographic distribution of Liquidambar formosana in the past (LIG, LGM) was reconstructed. The phenomenon of "full glacial expansion, interglacial contraction" was found in Liquidambar formosana. The average daily range and the average temperature in the coldest quarter are the most important environmental factors affecting the distribution of Liquidambar formosana, indicating that the most important environmental factor limiting its northward expansion is temperature.
【学位授予单位】:中国林业科学研究院
【学位级别】:博士
【学位授予年份】:2017
【分类号】:S792.99
【相似文献】
相关期刊论文 前10条
1 张惠娟,贾昆峰;林木遗传多样性与现代林业[J];内蒙古科技与经济;2000年03期
2 尚占环,姚爱兴;生物遗传多样性研究方法及其保护措施[J];宁夏农学院学报;2002年01期
3 蒋楠;作物遗传多样性的保护和持续利用[J];四川教育学院学报;2003年09期
4 张静;;作物遗传多样性的保护和持续利用[J];神州;2013年17期
5 ;《遗传多样性研究的原理与方法》评介[J];动物学研究;2000年02期
6 解新明,云锦凤;植物遗传多样性及其检测方法[J];中国草地;2000年06期
7 胡守荣,夏铭,郭长英,陆晓春;林木遗传多样性研究方法概况[J];东北林业大学学报;2001年03期
8 陈宽维;“我国家禽遗传多样性研究”前景诱人[J];中国家禽;2003年02期
9 朱秀志;彭正松;;四川珍稀林木资源及其遗传多样性研究状况[J];西部林业科学;2006年04期
10 高秀琴;兰进好;穆平;林琪;;小麦遗传多样性研究进展[J];山东农业科学;2007年03期
相关会议论文 前10条
1 胡志昂;;对我国遗传多样性研究的几点意见[A];生物多样性研究进展——首届全国生物多样性保护与持续利用研讨会论文集[C];1994年
2 何文珊;陆键键;;分子生物学技术在遗传多样性研究中的应用[A];生物多样性与人类未来——第二届全国生物多样性保护与持续利用研讨会论文集[C];1996年
3 刘娟;李贝宁;刘春生;周应群;;栽培对道地甘草遗传多样性的影响研究[A];中华中医药学会第十届中药鉴定学术会议暨WHO中药材鉴定方法和技术研讨会论文集[C];2010年
4 沈裕琥;王海庆;黄相国;葛菊梅;张怀刚;;作物品种间遗传多样性的研究进展[A];21世纪作物科技与生产发展学术讨论会论文集[C];2002年
5 沈裕琥;王海庆;黄相国;葛菊梅;张怀刚;;作物品种间遗传多样性的研究进展[A];中国科学院西北高原生物研究会论文集[C];2002年
6 沙伟;林琳;郑云梅;;小仙鹤藓遗传多样性分析[A];中国植物学会七十五周年年会论文摘要汇编(1933-2008)[C];2008年
7 ;“全国生物遗传多样性高峰论坛”日程安排[A];全国生物遗传多样性高峰论坛会刊[C];2012年
8 芒来;杨虹;;蒙古马遗传多样性研究进展[A];遗传学进步与人口健康高峰论坛论文集[C];2007年
9 毛培胜;王新国;黄莺;;分子标记技术在牧草遗传多样性研究中的应用[A];2009中国草原发展论坛论文集[C];2009年
10 周秋白;郑宇;周莉;桂建芳;;鄱阳湖鲫鱼遗传多样性分析[A];中国鱼类学会2008学术研讨会论文摘要汇编[C];2008年
相关重要报纸文章 前8条
1 胡云章;绚丽的民族文化 丰富的遗传多样性[N];大众科技报;2008年
2 刘霞;人类语言源于非洲再添新证据[N];科技日报;2011年
3 卞晨光;保护家畜遗传多样性刻不容缓[N];中国畜牧兽医报;2012年
4 本报记者 游雪晴;中国的人类遗传多样性研究成果丰硕[N];科技日报;2001年
5 记者 胡德荣;亚洲人群遗传多样性研究获最新成果[N];健康报;2009年
6 张桂香;中国地方水牛的遗传多样性[N];农民日报;2004年
7 李倩;不同民族永生细胞库建设取得进展[N];大众科技报;2007年
8 李倩;我国永生细胞库初具规模[N];人民日报;2007年
相关博士学位论文 前10条
1 孙荣喜;中国枫香树遗传多样性及谱系地理研究[D];中国林业科学研究院;2017年
2 周芸芸;神农架川金丝猴的遗传多样性及保护研究[D];中央民族大学;2015年
3 彭亮;丹参种质资源及其遗传多样性研究[D];西北农林科技大学;2015年
4 刘海龙;大叶榉遗传多样性与离体保存研究[D];中南林业科技大学;2015年
5 狄晓艳;油松遗传多样性与光合生理生态特性研究[D];山西大学;2014年
6 陈雪平;茄子遗传多样性研究与遗传连锁图谱构建[D];河北农业大学;2015年
7 蒋冬月;柳树优良无性系遗传多样性及其重要性状的关联分析[D];中国林业科学研究院;2015年
8 杨新笋;基于SSR、SNP和形态学标记的甘薯种质资源遗传多样性研究[D];中国农业大学;2016年
9 徐群;我国籼稻品种遗传结构与多样性的SNP分析[D];中国农业科学院;2016年
10 王涛;番茄遗传多样性及几个重要农艺性状的关联分析[D];沈阳农业大学;2016年
相关硕士学位论文 前10条
1 王琳;基于ISSR的连翘遗传多样性研究[D];山西农业大学;2015年
2 陈伟帅;小麦抗病遗传多样性对条锈病的调控效应[D];中国农业科学院;2015年
3 王若丁;西藏工布乌头天然群体的遗传多样性分析[D];东北林业大学;2015年
4 邓宏中;基于SSR标记的中国水稻地方品种与选育品种遗传多样性研究[D];中国农业科学院;2015年
5 刘丽;西藏墨脱地区野生草莓的遗传多样性分析[D];东北林业大学;2015年
6 张佳佳;沈阳森林动物园丹顶鹤(Grus japonensis)遗传多样性分析和亲缘关系研究[D];东北林业大学;2015年
7 梅芳芳;三种水生被子植物在中国六大湖泊的遗传多样性[D];华中师范大学;2015年
8 刘鹏;野豌豆属牧草的遗传多样性研究[D];兰州大学;2015年
9 胡益波;枳遗传多样性及其与红橘杂交后代遗传研究[D];华中农业大学;2015年
10 马旭丹;水稻部分骨干亲本的指纹图谱构建和遗传多样性分析[D];华中农业大学;2015年
,本文编号:2206573
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2206573.html