当前位置:主页 > 硕博论文 > 农业博士论文 >

日光温室番茄灌溉制度及水肥耦合效应研究

发布时间:2018-09-07 18:39
【摘要】:本文针对东北节能型日光温室膜下滴灌条件下番茄灌溉制度和水肥耦合效应展开研究,形成一套以番茄产量、果实品质、植株形态、光合作用、水分利用效率、土壤养分含量综合考虑的灌水施肥体系。以灌溉制度为主线,采用桶栽种植模式,通过膜下滴灌的灌溉方式,总结番茄耗水规律,建立番茄水分生产函数模型,监测番茄形态指标、品质指标、光合作用指标、产量指标,对番茄产量、水分利用效率、品质指标进行综合评价,确立合理的日光温室番茄灌溉制度;以水肥耦合设计方案为主线,采用大垄双行种植模式,结合膜下滴灌灌溉方式,监测番茄生长的气象指标、土壤指标,研究番茄产量和肥料的利用效率,确立温室番茄最优水肥管理模式。主要结论如下:(1)通过对番茄生长形态指标的分析可知,在苗期,土壤含水率控制在田间持水率70%~75%时有利于株高、茎粗、叶面积的生长;在开花着果期,适当的水分亏缺有利于茎粗的生长,土壤含水率控制在田间持水率60%~65%时,茎更为粗壮,土壤含水率控制在田间持水率75%~80%时,有利于株高和叶面积的生长;在结果盛期,土壤含水率控制在田间持水率80%~85%范围时,有利于番茄株高、茎粗、叶面积的生长;结果后期,番茄植株基本停止生长。(2)通过对番茄果实品质指标的分析可知,不同水分处理对番茄可溶性糖、维生素C、有机酸、糖酸比的含量影响显著,对可溶性蛋白含量的影响不显著。不同生育阶段土壤含水率控制在田间持水率70%~75%、60%~65%、80%~85%、75%~80%时,可溶性糖含量最大,可达到16.71%,维生素C含量最大,可达到16.91mg/g,糖酸比值最大,可达到39.79;不同生育阶段土壤含水率控制在田间持水率70%~75%、75%~80%、80%~85%、60%-65%时,可溶性蛋白含量最高,可达到0.053mg/g,有机酸含量最高,可达到0.57%,说明在开花着果期适当的水分亏缺有助于可溶性糖、维生素C含量的积累,糖酸比较高,在结果后期适当的水分亏缺有助于可溶性蛋白的积累。(3)通过对番茄光合指标的分析可知,番茄气孔导度在开花着果期差异性不显著,土壤含水率的变化对气孔导度的影响不大,在结果盛期,土壤含水率控制在田间持水率60%-65%时,有助于提高气孔导度;在开花着果期和结果盛期,土壤含水率对各处理的净光合速率影响均显著,土壤含水率控制在田间持水率75%-80%时,有助于提高开花着果期净光合速率,土壤含水率控制在田间持水率80%-85%时,有利于提高结果盛期番茄植株的净光合速率。(4)采用主成分分析方法对番茄产量、水分利用效率、品质指标进行综合评价,得到膜下滴灌条件下,日光温室番茄在整个生育期内的灌溉制度:苗期灌水2次,灌水定额为15~16mm;开花结果期灌水3次,灌水定额为15~17mm;结果盛期灌水5次,灌水定额为15~17mm;结果后期灌水4次,灌水定额为10-13mm,整个生育期的灌溉定额为190-220mm。(5)通过对番茄不同生育阶段水分敏感指数分析,建立Jensen模型、Minhas模型、Stewart模型和Singh模型水分生产函数,对回归方程显著性检验,Jensen模型的拟合程度要高于其他模型。日光温室番茄苗期的水分敏感系数为0.015,开花着果期的水分敏感系数为0.218,结果盛期的水分敏感系数为0.509,结果后期的水分敏感系数为0.036,结果盛期番茄对水分的亏缺程度最为敏感,其次为开花着果期,苗期番茄对水分亏缺敏感程度最小。(6)日光温室番茄最佳的水肥用量:氮肥565kg/hm2、磷肥375kg/hm2、钾肥150kg/hm2,灌水定额为200mmm,番茄的产量可达到50000kg/hm2。(7)监测不同水肥耦合处理,各土层土壤体积含水率变化趋势基本一致。随着时间的推移,各水分处理土壤含水率均呈下降趋势。温室温度和土壤含水率是日光温室番茄生长过程中应重点把握的两个因素,与改善番茄生长环境有着较为密切的关系,直接效应相关性较大。(8)不同水肥耦合处理间的速效氮空间分布基本一致,总体上呈45°斜线分布,土壤中速效氮的残留量取决于施氮量的多少,呈正相关关系;速效磷残留量在0-60cm是保持相似的趋势,但随着土层的加深,速效磷的含量反而有所提升:土壤剖面残留钾含量分布在空间上整体呈现“S”型,各个处理间差异较小,规律基本一致。
[Abstract]:In this paper, the coupling effect of water and Fertilizer on Tomato irrigation system under drip irrigation under mulch in Northeast China solar greenhouse was studied, and a set of irrigation and fertilization system was formed, which considered tomato yield, fruit quality, plant morphology, photosynthesis, water use efficiency and soil nutrient content. Through drip irrigation under mulch, the law of tomato water consumption was summarized, and the tomato water production function model was established to monitor tomato morphological index, quality index, photosynthesis index and yield index. With the plan as the main line, the large ridge and double row planting pattern was adopted, combined with drip irrigation under mulch, the meteorological index, soil index, tomato yield and fertilizer utilization efficiency were monitored, and the optimum water and fertilizer management model was established for greenhouse tomato. Controlling soil moisture content is beneficial to plant height, stem diameter and leaf area growth when field moisture content is 70%-75%; at flowering and Fruit-setting stage, appropriate water deficit is beneficial to stem diameter growth; when soil moisture content is controlled in field moisture content is 60%-65%, the stem is thicker; when soil moisture content is controlled in field moisture content is 75%-80%, it is beneficial to plant height and leaf area growth. During the fruiting period, when the soil moisture content was controlled in the range of 80%-85%, tomato plant height, stem diameter and leaf area grew well. At the later stage, tomato plant basically stopped growing. (2) Through the analysis of tomato fruit quality indicators, we can see that different water treatments on Tomato soluble sugar, vitamin C, organic matter. The content of soluble sugar reached 16.71%, the content of vitamin C reached 16.91 mg/g and the ratio of sugar to acid reached 39.79 when the soil water content was controlled at 70%-75%, 60%-65%, 80%-85% and 75%-80% of field water holding capacity. The content of soluble protein was the highest at 70% ~ 75%, 75% ~ 80%, 80% ~ 85%, 60% ~ 65%, and the content of organic acid was the highest at 0.053 mg/g and 0.57% at different growth stages. This indicated that the appropriate water deficit at flowering and fruiting stages was conducive to the accumulation of soluble sugar, vitamin C content and high sugar-acid ratio. The results showed that stomatal conductance had no significant difference at flowering and fruiting stages, and the change of soil moisture content had little effect on stomatal conductance, and it was helpful to control the soil moisture content at 60% - 65% field water holding capacity during the fruiting period. High stomatal conductance; at flowering and fruiting stages, soil moisture content had significant effects on the net photosynthetic rate of all treatments. When soil moisture content was controlled at 75% - 80% of field water holding capacity, it was helpful to increase the net photosynthetic rate at flowering and fruiting stages, and when soil moisture content was controlled at 80% - 85% of field water holding capacity, it was helpful to increase tomato plants at fruiting stage. (4) Principal component analysis was used to evaluate tomato yield, water use efficiency and quality index comprehensively, and the irrigation regime of Sunlight Greenhouse Tomato during the whole growth period was obtained under drip irrigation under mulch film: irrigation twice at seedling stage, irrigation quota 15-16 mm; irrigation three times at flowering and fruiting stage, irrigation quota 15-17 mm; Results The irrigation quota was 10-13mm and 190-220mm in the later period, respectively. (5) Jensen model, Minhas model, Stewart model and Singh model were established by analyzing the water sensitive index of Tomato in different growth stages. The results showed that the fitting degree of Jensen model was higher than that of other models. (6) The optimum water and fertilizer dosage of Tomato in solar greenhouse was 565 kg/hm2, 375 kg/hm2, 150 kg/hm2, and irrigation quota was 200 mmm. The yield of tomato could reach 50 000 kg/hm2 under different water and fertilizer coupling treatments. Greenhouse temperature and soil moisture content are two important factors in the growth process of Tomato in solar greenhouse, which have a close relationship with improving the growth environment of tomato, and have a great correlation with the direct effect. (8) The speed between different water and fertilizer coupling treatments. The spatial distribution of available nitrogen was basically the same, and the total distribution of available nitrogen was 45 degrees slant, and the residual amount of available nitrogen in soil was positively correlated with the amount of nitrogen applied. The residual amount of available phosphorus in 0-60 cm was similar, but with the deepening of soil layer, the content of available phosphorus increased: the residual potassium content in soil profile was distributed in space. On the whole, there was a "S" type, and the difference between the treatments was small, and the law was basically the same.
【学位授予单位】:沈阳农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S626;S641.2

【相似文献】

相关期刊论文 前10条

1 庞国新,乔立平;日光温室番茄两次结果有高招[J];蔬菜;2003年10期

2 张烨,乔立平;日光温室番茄健康长相判断[J];蔬菜;2004年06期

3 马丰粟,李爱芳,张春奇,查素娥,李红波;金回报在日光温室番茄上的应用效果[J];中国农村小康科技;2005年07期

4 张烨,乔立平;日光温室番茄健康长相判断[J];农村实用科技信息;2005年03期

5 于美琴;日光温室番茄多次坐果技术[J];山西农业;2005年09期

6 杜中平;日光温室番茄有机生态型无土栽培关键技术[J];长江蔬菜;2005年11期

7 郭庆茹;李学斌;王星红;王立明;李志;任天喜;;石嘴山市日光温室番茄有机生态型无土栽培技术[J];甘肃农业科技;2007年01期

8 李文;;日光温室番茄落蔓栽培要点[J];科学种养;2008年09期

9 郝里子;;陕北日光温室番茄高产优质栽培技术[J];西北园艺(蔬菜专刊);2008年04期

10 李宝光,宋越冬;日光温室番茄埋茎再生技术[J];长江蔬菜;1995年03期

相关会议论文 前10条

1 张慧智;;日光温室番茄生命周期影响评价研究[A];自然地理学与生态安全学术论文摘要集[C];2012年

2 孙曰波;;潍坊市日光温室番茄栽培管理专家系统的研制[A];2007年中国农业工程学会学术年会论文摘要集[C];2007年

3 徐进;;北京市越冬日光温室番茄高产栽培技术探讨[A];2013中国园艺学会设施园艺分会学术年会·蔬菜优质安全生产技术研讨会暨现场观摩会论文摘要集[C];2013年

4 贺超兴;张志斌;刘富中;王怀松;王耀林;;日光温室番茄规范化高产栽培技术研究[A];中国园艺学会第四届青年学术讨论会论文集[C];2000年

5 张国红;袁丽萍;郭英华;朱鑫;张振贤;;不同施肥水平对日光温室番茄生长发育的影响[A];《中国设施农业可持续发展》论坛论文资料汇编[C];2010年

6 张洁;李天来;徐晶;;不同时期亚高温对日光温室番茄光合物质分配、产量与品质的影响[A];2007年中国农业工程学会学术年会论文摘要集[C];2007年

7 张洁;李天来;徐晶;;不同时期昼间亚高温处理对日光温室番茄生长发育的影响[A];2004年中国设施园艺学会学术年会文集[C];2004年

8 陈劲憬;高丽红;冯超;;基肥种类对日光温室番茄生长发育和品质的影响[A];2004年中国设施园艺学会学术年会文集[C];2004年

9 马鹏里;尹东;张旭东;杨启国;杨兴国;王润元;;日光温室番茄生理生态特征量观测研究[A];中国气象学会2005年年会论文集[C];2005年

10 杨洁;李建设;;宁夏日光温室番茄微咸水灌溉试验研究[A];2013中国园艺学会设施园艺分会学术年会·蔬菜优质安全生产技术研讨会暨现场观摩会论文摘要集[C];2013年

相关重要报纸文章 前4条

1 北京市农业技术推广站 雷喜红;大跨度日光温室番茄冬季管理[N];河北科技报;2013年

2 东光县农业局 孙学增;如何防治日光温室番茄早衰[N];河北科技报;2006年

3 通讯员 张俊卿;临河区设施农业效益凸显[N];巴彦淖尔日报(汉);2010年

4 孝义市农业技术推广中心 王小莲;日光温室番茄套种早熟毛豆高效栽培技术探析[N];吕梁日报;2010年

相关博士学位论文 前7条

1 王文娟;日光温室番茄灌溉制度及水肥耦合效应研究[D];沈阳农业大学;2016年

2 汤丽玲;日光温室番茄的氮素追施调控技术及其效益评估[D];中国农业大学;2004年

3 王谦;日光温室番茄光温环境和传热研究[D];河南农业大学;2007年

4 林兴军;不同水肥对日光温室番茄品质和抗氧化系统及土壤环境的影响[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2011年

5 张国红;施肥水平对日光温室番茄生育和土壤环境的影响[D];中国农业大学;2004年

6 高新昊;农作物秸秆资源化利用及日光温室番茄长季节栽培肥水管理技术[D];南京农业大学;2006年

7 任华中;水氮供应对日光温室番茄生育、品质及土壤环境的影响[D];中国农业大学;2003年

相关硕士学位论文 前10条

1 易晓丽;水氮供应对日光温室番茄产量、品质及水氮利用效率的影响[D];西北农林科技大学;2012年

2 马凌燕;洛阳日光温室番茄无公害栽培技术研究[D];西北农林科技大学;2010年

3 艾先云;榆林日光温室番茄高产栽培技术研究[D];西北农林科技大学;2007年

4 苟军松;滨海盐碱地日光温室番茄施肥水平的研究[D];中国农业大学;2005年

5 王康峰;几种基质配方对日光温室番茄栽培影响的研究[D];西北农林科技大学;2007年

6 曲佳;日光温室长季节栽培番茄群体辐射特性及光合作用模拟模型研究[D];沈阳农业大学;2011年

7 曹云娥;日光温室番茄滴灌营养液土壤栽培试验研究[D];宁夏大学;2005年

8 单志杰;日光温室番茄根区局部控水无压地下灌溉技术参数研究[D];西北农林科技大学;2007年

9 袁丽萍;水氮供应对日光温室番茄生育及品质影响的研究[D];中国农业大学;2004年

10 许金香;日光温室番茄栽培需水规律的研究[D];中国农业大学;2004年



本文编号:2229099

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2229099.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户fa4b7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com