六轮摆臂林用底盘稳定性分析与防倾翻研究
[Abstract]:With the increase of gross domestic product of forestry year by year, mechanization, automation and intelligent afforestation and harvesting will be the development trend in the future. The traditional forest chassis is mostly wheel-bridge type and crawler type. In the rugged terrain, there is no adaptive control function, high tipping probability. In this paper, an improved six-wheel swing arm forest chassis is proposed, which can change the position and pose of the chassis to improve the stability of the chassis. The main research work and innovation are as follows: 1. The corresponding virtual prototype model is designed and the experimental prototype is developed. The prototype consists of front frame, rear frame, left upper pendulum arm, right upper pendulum arm, left humanoid pendulum arm, right humanoid pendulum arm, left rear pendulum arm, right rear pendulum arm. And 6 tires are composed of 14 moving parts. The size and mass parameters and swing angle range of the test prototype are determined according to the prototype model. The basic coordinate system of the chassis is established at the center point of the swing arm of the front frame, and the kinematics model of the chassis is established by using the spinor theory. The Kane equation is used to establish the dynamic model of the chassis, and the Fiala tire model is used to define 12 generalized coordinates, and the universal dynamic model of the chassis is established. The dynamic model of the chassis is simplified by the relationship between the angular velocity of the chassis and the generalized velocity and the generalized angular velocity under the condition of pure tipping, and the final tipping dynamics model .3 is obtained. Combined with the static instability mechanism of the chassis, the chassis kinematics and the method of judging the stable cone, the influence of the swing arm angle on the static stability of the chassis is studied in this paper. It is concluded that the longitudinal instability should be reduced and the center of gravity should be reduced. The lateral instability should increase the side swing angle of the tilting shaft and reduce the opposite side swing angle to realize the lateral leveling of the fuselage. The static stability control strategy of the six-wheel swing arm chassis is put forward. In this paper, the influence of chassis velocity and swing arm angular acceleration on the dynamic instability of chassis is studied by combining with the dynamic tipping mechanism of chassis, the tipping dynamic model and the TTR early warning algorithm. The conclusions are as follows: increasing the angular acceleration of the tilting shaft will reduce the turning speed of the chassis during the process of dynamic destabilization and the corresponding dynamic stability control strategy is designed. A new active intelligent obstacle surmounting algorithm is proposed to maintain the stability of the fuselage. A joint simulation platform based on ADAMS and Simulink is established. The three states of vertical slope, side slope and dynamic collision are simulated, and the corresponding control strategies are adopted. The stability of the chassis is improved to varying degrees. The test results show that the maximum side inclination angle of the chassis prototype is 4.5 掳and the maximum longitudinal inclination angle is 2.5 掳under passive collision. The maximum inclination angle of the chassis prototype is 0.75 掳and the maximum longitudinal inclination angle is 0.4 掳. This experiment verifies the correctness of the algorithm of active obstacle crossing.
【学位授予单位】:北京林业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S776
【相似文献】
相关期刊论文 前4条
1 李洪德;王敦军;付敏良;;新型自由摆臂式喂入机构[J];农村牧区机械化;2007年03期
2 孙旭亮;翁志煌;杨琳;;后挖掘机具摆臂机构的设计[J];农业开发与装备;2014年03期
3 孙智慧;;有关东方红-1002型拖拉机摆臂轴的改进建议[J];农业机械;1999年12期
4 ;[J];;年期
相关会议论文 前10条
1 李诚志;B·爱德华特;;短跑摆臂动作模式[A];参加第四届全国运动生物力学学术会议论文集[C];1983年
2 于渤洋;陆阿明;;不同手握负重对摆臂下蹲跳的影响研究[A];第九届全国体育科学大会论文摘要汇编(3)[C];2011年
3 马斌;李海琴;;普通高校短跑摆臂技术教学的探讨与分析[A];第十四届全国高校田径科研论文报告会论文专辑[C];2004年
4 李立;赵焕彬;;对刘易斯、贝利、格林、蒙哥马利摆臂方式的力学分析[A];第十届全国运动生物力学学术交流大会论文汇编[C];2002年
5 白婧;李玲君;李建臣;;“跨栏摆臂控制带”在跨栏运动中角量平衡问题的运动学研究[A];中国体育科学学会运动训练学分会第四届全国田径运动发展研究成果交流会论文集[C];2011年
6 黄小林;刘建国;张彬;;短跑项目摆臂力量训练器的研制[A];第12届全国运动生物力学学术交流大会论文汇编[C];2008年
7 李健;刘刚;陈德志;;百米短跑项目上肢摆臂技术研究[A];中国体育科学学会运动训练学分会第六届全国田径运动发展研究成果交流会论文集[C];2013年
8 顾冬云;胡飞;陈金灵;吴昱;;不同摆臂模式对人体步行稳定性的影响[A];第十届全国生物力学学术会议暨第十二届全国生物流变学学术会议论文摘要汇编[C];2012年
9 罗霄;张学军;;采用摆臂式轮廓仪实现大口径空间光学表面的高精度测量[A];中国空间科学学会2013年空间光学与机电技术研讨会会议论文集[C];2013年
10 汪孝林;周启武;贺成柱;崔岐生;;L25-1臂式自动采制样系统摆臂结构仿真分析[A];2010全国机械装备先进制造技术(广州)高峰论坛论文汇编[C];2010年
相关博士学位论文 前1条
1 孙治博;六轮摆臂林用底盘稳定性分析与防倾翻研究[D];北京林业大学;2016年
相关硕士学位论文 前10条
1 王翔;三种增强式跳跃动作的生物力学特征比较研究[D];西南大学;2015年
2 向军;一种新型摆臂式脉动无级变速器的设计与研究[D];湘潭大学;2015年
3 刘新颖;独立悬架系统横摆臂的力学特性研究[D];沈阳工业大学;2016年
4 高明星;摆臂式轮廓仪旋转轴空间状态标定技术研究[D];中国科学院研究生院(光电技术研究所);2016年
5 于渤洋;摆臂对纵跳影响的生物力学机制研究[D];苏州大学;2012年
6 黄小林;短跑项目摆臂力量训练器的研发[D];河北师范大学;2009年
7 刘姗;跳远摆臂技术对起跳效果影响的研究[D];陕西师范大学;2011年
8 刘之涛;蜂窝夹层摆臂弯曲性能及冲击响应的分析与研究[D];广东工业大学;2014年
9 练森标;某客车前悬架运动性能及摆臂结构优化[D];南昌大学;2014年
10 屈新雯;摆臂式升降工作平台的结构设计与关键技术研究[D];哈尔滨工业大学;2009年
,本文编号:2237047
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2237047.html