当前位置:主页 > 硕博论文 > 农业博士论文 >

生物炭还田对棕壤氮素利用及玉米生长的影响

发布时间:2018-11-18 18:27
【摘要】:多年来,我国氮肥施用量持续增加,氮肥利用效率却难以显著提高,大量氮素通过氨挥发、氧化亚氮排放、淋溶作用等途径损失,不仅造成了巨大的资源浪费,也引起了严重的土壤酸化、富营养化等农业面源污染问题,极大地制约了农业可持续发展。自20世纪肥料化工兴起之时,寻找有效的抑制氮肥损失的途径便成为学术界关注的热点。近年新兴的生物炭技术有可能为提高肥料利用效率、降低氮素损失提供一整套新的解决方案。因此,明确生物炭还田对作物的吸氮规律以及肥料氮素的分布特征对指导生物炭还田改土、提高氮肥利用效率意义重大。为研究生物炭还田对玉米氮素利用的影响,于2012年至2013年在沈阳农业大学南院试验场开展了盆栽15N同位素示踪试验,监测生物炭还田条件下农田土壤的氨挥发、氧化亚氮排放和氮素淋溶以及无机氮素的动态分布和肥料15N的归趋;于2013年在沈阳农业大学棕壤长期定位试验站开展了田间试验,研究不同生物炭施用量对玉米生长动态、干物质积累以及产量品质的影响。其中,盆栽试验设置3个处理,(1)CK不施生物炭不施氮肥, (2)N常规施肥不施生物炭,(3)NB生物炭与氮肥配施(生物炭用量为1.64%,相当于田间用量40 t.hm-2),盆栽试验所用尿素的15N丰度为10%。田间试验设置5个处理,(1)B0不施氮肥且不施生物炭,(2)B20不施氮肥只施20 t.hm-2生物炭,(3)NB0常规施肥不施生物炭,(4)NB20氮肥与20t.hm-2生物炭配施,(5)NB40氮肥与40 t.hm-2生物炭配施。氨挥发测定采用半封闭式酸吸收法,氧化亚氮排放通量测定采用密闭箱-气相色谱法,土壤速效氮含量测定采用连续流动注射分析法,利用元素分析仪测定植物和土壤的氮素含量,TOC分析仪测定淋溶液的全氮含量,同位素质谱仪测定各样品的15N同位素丰度。主要研究结果概括如下:1.田间试验表明,与B0相比,B20处理玉米产量显著降低20.55%。与NB0相比,NB20处理显著提高了根系活力,促进玉米的穗部干物质积累,改善了玉米的品质,提高玉米的产量6.07%。NB40处理由于过度降低土壤容重导致出苗率下降,同时过度增加土壤的碳氮比促使微生物与玉米争氮,最终导致品质下降,产量降低13.88%。可见,适量生物炭与氮肥配施可以促进玉米生长发育和品质形成,一次性大量施炭(40 t.hm-2)对当季作物生长不利。2.与B0相比,B20处理玉米的吸氮量显著降低了16.9%;与NB0相比,NB20处理玉米的吸氮量增加5.6%,而NB40处理减少了15.3%。生物炭提高了籽粒中氮素含量,与NB0相比,NB20处理籽粒的氮素含量显著提高17.13%。可见,适量生物炭与氮肥配施促进作物对氮素的吸收,提高土壤氮素的利用效率。3.盆栽试验表明,与N相比,NB处理的玉米吸氮量显著增加7.20%;土壤的氧化亚氮排放显著降低了26.67%,土壤的氮素淋溶损失显著降低了47.48%,共减少由氨挥发、氧化亚氮排放和淋溶所引起的土壤氮素损失34.11%。生物炭与肥料配施可以增加作物的吸氮量,抑制土壤的氧化亚氮排放、降低了氮素的淋溶损失。4.盆栽15N示踪试验表明,与N相比,NB处理玉米对肥料15N的吸收量减少7.98%,氮肥利用率低3.6%;土壤中肥料15N残留量增加了17.03%,残留率高6.4%;总体而言,肥料15N损失量降低了27.55%,损失率低3.7%。可见,生物炭降低了肥料氮素的当季可利用性,但增加了土壤对肥料氮素的固持作用,显著减少了肥料氮素以氨挥发、氧化亚氮排放和淋溶三种途径的损失。综上所述,适量生物炭与氮肥配施可促进玉米对氮素的吸收,提高玉米产量;生物炭可以减少氮素的淋溶和氧化亚氮排放损失,降低化肥中氮素的当季利用率,增加了氮在土壤中的持留,促进了土壤自身氮素的有效化和向植物体的转移,为实现减量施肥创造了条件。
[Abstract]:In that past year, the application rate of the nitrogen fertilizer in China has been continuously increase, the use efficiency of the nitrogen fertilizer is not obviously improved, and a great amount of nitrogen is lost through the methods of ammonia volatilization, nitrous oxide emission, leaching, and the like, not only causing great resource waste, but also causing serious soil acidification, The problems of agricultural surface source pollution, such as eutrophication, have greatly restricted the sustainable development of agriculture. In the light of the rise of fertilizer and chemical industry in the 20th century, it has become the focus of the academic circles to find effective ways to restrain the loss of nitrogen fertilizer. In recent years, the new bio-carbon technology has the potential to provide a whole set of new solutions for improving the utilization efficiency of the fertilizer and reducing the loss of nitrogen. Therefore, it is of great significance to make clear that the nitrogen absorption law of the biological carbon and the distribution of the nitrogen in the fertilizer can be used to guide the remediation of the biological carbon and improve the utilization efficiency of the nitrogen fertilizer. In order to study the effect of the biochar on the nitrogen utilization of the corn, a pot-pot 15N isotope tracing test was conducted in the southern courtyard of Shenyang Agricultural University from 2012 to 2013, and the ammonia volatilization of the soil under the condition of the biological carbon was monitored. The effects of the application of different biochar on the growth of maize, the accumulation of dry matter and the quality of the yield were studied in the long-term location test station of brown soil in Shenyang Agricultural University in 2013. In the pot experiment, three treatments were set, (1) CK was not applied to biochar, no nitrogen fertilizer was applied, (2) N was not applied to biochar, and (3) NB bio-carbon and nitrogen fertilizer were applied (the amount of biochar was 1.64%, which was equivalent to the field amount of 40 t. hm-2), and the 15N abundance of urea used in the pot experiment was 10%. In field experiment, 5 treatments were set, (1) B0 was not applied with nitrogen fertilizer and no biochar was applied, (2) B20 nitrogen fertilizer was applied only to 20 t. hm-2 biological carbon, (3) NB0 was not applied to biological carbon, (4) NB20 nitrogen fertilizer was applied to 20t.hm-2 biological carbon, and (5) NB40 nitrogen fertilizer was applied to 40 t. hm-2 biological carbon. A semi-closed acid absorption method is adopted for the determination of the ammonia volatilization, the determination of the nitrogen oxide emission flux is carried out by adopting a closed box-gas chromatography, a continuous flow injection analysis method is adopted for the determination of the quick-acting nitrogen content of the soil, and the nitrogen content of the plant and the soil is determined by using an element analyzer, The total nitrogen content of the leaching solution was determined by the TOC analyzer and the 15N isotopic abundance of each sample was determined by the isotope mass spectrometer. The main findings are summarized as follows: 1. The field experiment showed that the yield of B20 treated with B20 was significantly reduced by 20. 55% compared with that of B0. and compared with the NB0, the NB20 treatment obviously improves the vitality of the root system, promotes the dry matter accumulation of the ear part of the corn, improves the quality of the corn, improves the yield of the corn by 6. 07%, At the same time, the carbon-nitrogen ratio of the soil is excessively increased, and the nitrogen of the microorganism and the corn is promoted, the quality is reduced, and the yield is reduced by 13.88%. It can be seen that a proper amount of carbon and nitrogen fertilizer can promote the growth and quality of the corn, and a large amount of carbon (40 t. hm-2) can be applied to the seasonal crop. The nitrogen uptake of B20 treated with B20 was decreased by 16. 9% as compared with that of B0, and the amount of nitrogen uptake by NB20 in the treatment of corn increased by 5. 6% compared with that of NB0, while the treatment of NB40 was reduced by 15. 3%. The nitrogen content in the grain was increased by the biochar, and the nitrogen content in the treated seeds of the NB20 was significantly increased by 17.13% as compared with that of the NB0. It can be seen that proper amount of biological carbon and nitrogen fertilizer can promote the absorption of nitrogen and improve the utilization efficiency of soil nitrogen. The pot experiment showed that the nitrogen content of the treated corn was significantly increased by 7. 20% in comparison with that of N. The nitrogen emission of the soil was significantly reduced by 26. 67%, and the loss of nitrogen leaching in the soil was significantly reduced by 47. 48%, and the volatilization of ammonia was reduced. Soil nitrogen loss caused by nitrous oxide and leaching was 34. 11%. the application of the biological carbon and the fertilizer can increase the nitrogen absorption capacity of the crops, inhibit the emission of the nitrous oxide of the soil, and reduce the leaching loss of the nitrogen. The results showed that, compared with N, the uptake of fertilizer 15N by NB decreased by 7. 98%, the utilization rate of nitrogen fertilizer was 3. 6%, the residue of 15N in the soil increased by 17. 03%, and the residual rate was 6. 4%; in general, the loss of 15N in the fertilizer was reduced by 27. 55% and the loss rate was 3. 7%. It can be seen that the biochar reduces the seasonal availability of the nitrogen in the fertilizer, but increases the solid-holding effect of the soil on the nitrogen of the fertilizer, and obviously reduces the loss of the fertilizer nitrogen in the three ways of ammonia volatilization, nitrous oxide emission and leaching. In conclusion, proper amount of biological carbon and nitrogen fertilizer can promote the absorption of nitrogen and improve the yield of the corn, and the biological carbon can reduce the leaching of nitrogen and the loss of nitrous oxide emission, reduce the seasonal utilization rate of nitrogen in the fertilizer, increase the retention of the nitrogen in the soil, the effect of the nitrogen of the soil and the transfer of the soil to the plant body are promoted, and conditions are created for realizing the reduction and fertilization.
【学位授予单位】:沈阳农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S513

【相似文献】

相关期刊论文 前10条

1 张忠河;林振衡;付娅琦;王宏海;康全德;尤希凤;;生物炭在农业上的应用[J];安徽农业科学;2010年22期

2 何绪生;耿增超;佘雕;张保健;高海英;;生物炭生产与农用的意义及国内外动态[J];农业工程学报;2011年02期

3 何绪生;张树清;佘雕;耿增超;高海英;;生物炭对土壤肥料的作用及未来研究[J];中国农学通报;2011年15期

4 谢祖彬;刘琦;许燕萍;朱春悟;;生物炭研究进展及其研究方向[J];土壤;2011年06期

5 杨放;李心清;王兵;程建中;;生物炭在农业增产和污染治理中的应用[J];地球与环境;2012年01期

6 张千丰;王光华;;生物炭理化性质及对土壤改良效果的研究进展[J];土壤与作物;2012年04期

7 陈温福;张伟明;孟军;;农用生物炭研究进展与前景[J];中国农业科学;2013年16期

8 张伟;;生物炭创造“技术土壤”[J];农业知识;2013年23期

9 张晗芝;黄云;刘钢;许燕萍;刘金山;卑其诚;蔺兴武;朱建国;谢祖彬;;生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J];生态环境学报;2010年11期

10 姜玉萍;杨晓峰;张兆辉;陈春宏;王良军;;生物炭对土壤环境及作物生长影响的研究进展[J];浙江农业学报;2013年02期

相关会议论文 前10条

1 沈国清;;生物炭影响土壤生态系统功能的生物学机制[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年

2 杨丹;刘限;刘鸣达;张玉龙;;生物炭对农业可持续发展和环境改良作用的研究进展[A];发展低碳农业 应对气候变化——低碳农业研讨会论文集[C];2010年

3 黄苹;潘波;焦杏春;;滇池底泥制备的生物炭对菲的吸附-解吸[A];持久性有机污染物论坛2011暨第六届持久性有机污染物全国学术研讨会论文集[C];2011年

4 戴中民;刘杏梅;吴建军;汪海珍;徐建明;;用于改良酸性土壤的生物炭基本性质的表征[A];面向未来的土壤科学(上册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年

5 闫智培;李十中;;生物质热解生产生物炭研究进展[A];全国农村清洁能源与低碳技术学术研讨会论文集[C];2011年

6 陆海楠;胡学玉;陈威;;生物炭添加对土壤CO_2排放的影响[A];农业环境与生态安全——第五届全国农业环境科学学术研讨会论文集[C];2013年

7 孟静静;刘静宇;黄少鹏;;低碳经济下的生物炭研究[A];低碳陕西学术研讨会论文集[C];2010年

8 王震宇;郑浩;李锋民;;湿地植物芦竹生物炭的制备及特性表征研究[A];2010中国环境科学学会学术年会论文集(第四卷)[C];2010年

9 陈再明;陈宝梁;;不同裂解温度制备的松木屑生物炭对萘的吸附动力学行为[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年

10 李程;李小平;;生物炭对滩涂盐碱土中黑麦草生长的影响初步研究[A];2014中国环境科学学会学术年会(第十二章)[C];2014年

相关重要报纸文章 前8条

1 本报记者 刘霞;生物炭能否给地球降降温?[N];科技日报;2009年

2 记者 王靖tD;把生物炭还给农田[N];沈阳日报;2012年

3 白云水;唐山农民发明秸秆提取生物炭新技术[N];江苏科技报;2009年

4 本报记者 张晔;生物炭能让土壤更肥沃吗?[N];科技日报;2013年

5 记者 耿建扩 通讯员 常云亮 王小胜;农民王有权将秸秆变成“香饽饽”提取生物炭和焦油新技术获国家专利[N];光明日报;2009年

6 记者 班玮;二氧化碳变害为宝的新妙招[N];新华每日电讯;2010年

7 罗冰;生物炭渐火 农林废弃物就地一“焖”变成宝[N];粮油市场报;2011年

8 本报记者 郝晓明;为子孙留一片沃土蓝天[N];科技日报;2012年

相关博士学位论文 前10条

1 鄂洋;生物炭表面有机小分子及其活性研究[D];沈阳农业大学;2015年

2 张杰;秸秆、木质素及生物炭对土壤有机碳氮和微生物多样性的影响[D];中国农业科学院;2015年

3 孙大荃;生物炭碳源驱动土壤微生物区系代谢作用研究[D];沈阳农业大学;2015年

4 吴洁;不同秸秆还田方式与秸秆生物炭施用对农田温室气体排放和土壤固碳的影响[D];南京农业大学;2014年

5 谢淘;生物炭的特性分析及其在黄水资源化中的应用[D];清华大学;2015年

6 刘宁;生物炭的理化性质及其在农业中应用的基础研究[D];沈阳农业大学;2014年

7 NGUYEN THI HUONG;生物质炭对西北地区土壤质量及作物产量的影响[D];西北农林科技大学;2016年

8 江琳琳;生物炭对土壤微生物多样性和群落结构的影响[D];沈阳农业大学;2016年

9 程效义;生物炭还田对棕壤氮素利用及玉米生长的影响[D];沈阳农业大学;2016年

10 张伟明;生物炭的理化性质及其在作物生产上的应用[D];沈阳农业大学;2012年

相关硕士学位论文 前10条

1 李靖;不同源生物炭的理化性质及其对双酚A和磺胺甲VA唑的吸附[D];昆明理工大学;2013年

2 李昌见;生物炭对砂壤土理化性质及番茄生长性状的影响及其关键应用技术研究[D];内蒙古农业大学;2015年

3 梁桓;影响生物炭基氮肥氮素释放因素的研究[D];内蒙古农业大学;2015年

4 武玉;生物炭对土壤中磷的形态转化以及有效性的影响[D];中国科学院烟台海岸带研究所;2015年

5 李阳;生物炭输入对纳帕海青稞生长与土壤微生物生态学特征的影响[D];昆明理工大学;2015年

6 邱志腾;生物炭对红壤的降酸效果与毛豆生长的影响[D];浙江大学;2015年

7 吴晶;生物炭精控制备方法的研究[D];沈阳农业大学;2015年

8 盖霞普;生物炭对土壤氮素固持转化影响的模拟研究[D];中国农业科学院;2015年

9 王丽丽;不同生物炭对铅锌矿尾矿重金属污染土壤修复效果的研究[D];浙江大学;2015年

10 于志红;锰氧化物—生物炭复合材料对砷的生物有效性的影响[D];中国农业科学院;2015年



本文编号:2340796

资料下载
论文发表

本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2340796.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户420f2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com