大豆疫霉效应子PsCRN63调控植物先天免疫及细胞死亡的功能与作用机制研究
[Abstract]:The innate immunity of a plant is activated after a molecule from a pathogenic microorganism, which comprises a conserved pathogen or a microorganism-related molecular pattern (PMPs/ MMPs) and a variety of effector molecules. The immune response (PTI) and effector-induced immune response (ETI)-induced immune response (ETI), which are triggered by PMPs and effector-related molecular patterns, are two effective weapons for the plant to resist the infection of the pathogen, and constitute the natural immune system of the plant. The toxic pathogenic bacteria can secrete a large amount of effector molecules that can act outside the cell of the plant and can also be transported to the plant cells and function in the cell. The main function of the effector molecule is to inhibit the host immune response, thereby promoting growth and reproduction, and achieving the purpose of successful infection. However, the biochemical and molecular mechanisms of most effector proteins are not clear. Therefore, the study of the function and molecular mechanism of these effect proteins in the pathogenic process will help us to understand the pathogenic mechanism of the pathogenic bacteria and the mechanism of the plant immune. Phytophthora infestans can cause a variety of typical plant diseases on plants, such as Phytophthora infestans and Phytophthora sojae. Phytophthora sojae is a part of oomycetes, which is similar to the fungi in the form, but it has a close relationship with the diatom and the blue-green algae in the evolution, so the germicide designed for the fungus at the present stage is often ineffective for the Phytophthora sojae and other oomycetes. RxLR (R represents arginine, L represents leucine, X represents any amino acid) and CRN (Crinkler) effector molecules are the most important classes in the intracellular effector molecule of the oomycetes. These two types of effector molecules are modular proteins: their N-terminal contains a conserved domain (RxLR and dEOR or LFLAK) and can aid in the transport of effector proteins to the host cell, while the C-terminal is a diverse functional domain that is involved in the regulation of the plant immune response. Because of the lack of sequence similarity to known proteins, it is difficult to predict the function and the mechanism of action of these effector proteins. In this paper, the function of one intracellular effector PsCRN63 in Phytophthora sojae atricolor was analyzed and its possible toxicity mechanism was explored. The main results and conclusions were as follows: Previous studies have shown that the effects of Phytophthora sojae, PsCRN63 (creping and necrosis-inducing proteins), can cause programmed cell death in plants, while the PsCRN115 can block the process; however, both are essential to the pathogenicity of the pathogenic bacteria. Here, we found that the individual expression of the PsCRN63 or the co-expression of the PsCRN63 and the PsCRN115 can inhibit the immune response on the tobacco, and both intracellular effector molecules can interact with the catalase from the tobacco (Nicotiana enthamiana) and the soybean (Glycine max). Further, we have found that when the PsCRN63 is expressed in a plant, the protein of the catalase GmCAT1 (N. benthamiana CATAIL1) in the tobacco and the catalase GmCAT1 in the soybean becomes unstable, and the PsCRN115 can prevent this change. The experimental results show that the instantaneous expression of PsCRN63 in tobacco can lead to the accumulation of hydrogen peroxide (H2O2), and the PsCRN115 is still the opposite. Finally, we find that the transient expression of NbCAT1 or GmCAT1 in tobacco can specifically alleviate the cell death symptoms induced by PsCRN63. Therefore, we assume that PsCRN63/115 regulates the intracellular state of hydrogen peroxide within the cell by interacting with the catalase, thereby regulating the cell death induced on the plant. The results showed that Phytophthora sojae was able to secrete two effector molecules, and through direct interaction with catalase, the cell death and the internal steady state of hydrogen peroxide were regulated, and the immune response of host plants was overcome. Phytophthora sojae effect molecule PsCRN63 regulates the innate immunity of plants by intracellular dimerization. In this study, we found that the effect molecule PsCRN63 of Phytophthora sojae was able to inhibit the expression of the marker gene of the immune (PTI) triggered by the pathogen-related molecular pattern (PAMP), and the expression of the flg22-induced FRK1 gene. However, the PsCRN63 does not inhibit the related events of the signaling pathway upstream of the PTI, including the activation of the flg22-induced MAPK and the phosphorylation of BIK1, which indicates that it acts downstream of the MAPK cascade. The sensitivity of PsCRN63 transgenic Arabidopsis plants to the pathogenic bacteria of Pseudomonas syringae patovar tomas, Pst and Phytophthora capsici was enhanced. In addition, the active oxygen burst induced by flg22 in the PsCRN63 transgenic plant was inhibited compared to the wild-type plant. At the same time, the expression of PTI-related genes was also down-regulated in the transgenic plants of PsCRN63. Interestingly, we found that the N-and C-ends of the PsCRN63 protein were able to interact within the plant cells in a reverse-linked manner to form a homodimer. In addition, the N-and C-terminal domains required to form the dimer are very conserved in the CRN effector molecule, suggesting that the formation of the homologous/ heterologous polymer of the Phytophthora CRN effector molecule is necessary for its biological function. The formation of dimers has proven to be necessary for PsCRN63 to exercise PTI inhibition and cell death induction. The above results can improve our understanding of how to manipulate the plant to promote the infection.
【学位授予单位】:南京农业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S432.4
【相似文献】
相关期刊论文 前10条
1 周明华,杜国兴,陈正桥,张强,汪利忠;进口大豆中大豆疫霉的检测及检疫监管[J];植物检疫;2000年06期
2 李莹,文景芝,刘春来;大豆疫霉ISSR-PCR反应体系的建立[J];东北农业大学学报;2005年02期
3 曾娟;王源超;申贵;郑小波;;大豆疫霉甘油醛-3-磷酸脱氢酶基因在病原物植物互作中诱导表达及其抗氧化作用在酵母遗传互补系统中的功能验证[J];科学通报;2006年10期
4 鲁红侠;王子迎;;大豆疫霉与寄主互作过程中致病性的变化[J];安徽教育学院学报;2007年06期
5 陈孝仁;程保平;王新乐;董莎萌;王永林;郑小波;王源超;;利用绿色荧光蛋白研究大豆疫霉与大豆的互作[J];科学通报;2009年13期
6 吴翠萍;郑斯竹;李彬;粟寒;李敏;安榆林;;土壤中大豆疫霉检测技术的改进[J];植物检疫;2010年05期
7 唐庆华;崔林开;苗苗;李德龙;阴伟晓;郑小波;王源超;;我国部分地区大豆疫霉群体遗传分析[J];南京农业大学学报;2011年02期
8 王晓鸣,朱振东,马淑梅,李宝英;大豆疫霉选择性分离技术研究[J];植物病理学报;1998年01期
9 付红梅;李淼;檀根甲;王子迎;赵平生;;大豆疫霉拮抗菌株的筛选与鉴定[J];安徽农业科学;2011年19期
10 付红梅;李淼;檀根甲;王子迎;;大豆疫霉拮抗菌株的筛选与鉴定(英文)[J];Plant Diseases and Pests;2011年04期
相关会议论文 前10条
1 王永林;王晓莉;赵伟;张正光;窦道龙;王源超;;大豆疫霉G蛋白偶联受体GPR11的功能研究[A];中国植物病理学会2009年学术年会论文集[C];2009年
2 王源超;郑小波;;大豆疫霉与寄主相互识别与致病机制研究[A];生物入侵与生态安全——“第一届全国生物入侵学术研讨会”论文摘要集[C];2007年
3 张玉梅;赵晋铭;邢邯;林国强;胡润芳;;大豆抗感种质接种大豆疫霉后的比较蛋白质组学研究[A];第23届全国大豆科研生产研讨会论文摘要集[C];2012年
4 蔡萌;毕扬;刘西莉;;大豆疫霉对苯酰菌胺的敏感基线及其抗性机制初探[A];中国植物病理学会2011年学术年会论文集[C];2011年
5 曹舜;杨光红;蒋冰心;高智谋;;几种杀菌剂及其复配剂对大豆疫霉的毒力测定[A];第三届全国生物入侵大会论文摘要集——“全球变化与生物入侵”[C];2010年
6 华辰雷;郑小波;王源超;;大豆疫霉对大豆异黄酮趋化性的分子基础研究[A];江苏省植物病理学会第十一次会员代表大会暨学术研讨会论文集[C];2008年
7 王子迎;王朝霞;沈洁;鲁红侠;;大豆疫霉卵孢子发育相关基因的筛选与分析[A];2010年中国菌物学会学术年会论文摘要集[C];2010年
8 王群青;王新乐;于晓丽;韩长志;刘廷利;尧瑶;Tvler B;Dou DL;郑小波;王源超;;大豆疫霉RxLR类效应分子的功能筛选[A];中国植物病理学会2008年学术年会论文集[C];2008年
9 曹舜;陈方新;潘月敏;高智谋;;生防菌BS-4对大豆疫霉的抑制作用研究[A];安徽省昆虫学会、安徽省植物病理学会2012年学术年会论文集[C];2012年
10 王永林;李爱宁;黄茜;郑小波;王源超;;热激转录因子PsHSF1在大豆疫霉发育与致病过程中作用的研究[A];中国植物病理学会2009年学术年会论文集[C];2009年
相关重要报纸文章 前5条
1 学友;检疫监管亟待加强[N];农民日报;2001年
2 平;发现细胞死亡新形式[N];健康报;2007年
3 曹丽君;细胞死亡将有新定义?[N];医药经济报;2004年
4 姜岩 魏忠杰 钱铮;2002年诺贝尔医学奖发现细胞死亡基因规则[N];中国保险报;2002年
5 编译 王金元;细胞死亡导致人类变老[N];北京科技报;2005年
相关博士学位论文 前10条
1 李琦;大豆疫霉效应子PsCRN63调控植物先天免疫及细胞死亡的功能与作用机制研究[D];南京农业大学;2016年
2 曹舜;短小芽孢杆菌BS-4菌株对大豆疫病的生防作用及其机制研究[D];安徽农业大学;2015年
3 申贵;大豆疫霉侵染大豆早期差异表达基因的筛选与功能分析[D];南京农业大学;2005年
4 王子迎;大豆疫霉群体遗传结构及致病相关基因的筛选和功能分析[D];南京农业大学;2006年
5 陈孝仁;大豆疫霉侵染早期机制的分子解析[D];南京农业大学;2007年
6 阴伟晓;大豆疫霉无毒效应分子的鉴定及其毒性机理研究[D];南京农业大学;2014年
7 韩长志;大豆疫霉效应分子的功能研究[D];南京农业大学;2010年
8 张萌;大豆疫霉MAP kinase PsSAK1信号途径及MYB转录因子基因家族的功能分析[D];南京农业大学;2012年
9 刘廷利;大豆疫霉CRN基因家族效应分子的功能研究[D];南京农业大学;2010年
10 沈丹宇;大豆疫霉效应子分子进化和贵阳腐霉基因组研究[D];南京农业大学;2014年
相关硕士学位论文 前10条
1 唐仕妤;大豆疫霉(Phytophthora sojae)不同致病型生物学性状差异研究[D];安徽农业大学;2014年
2 姚萌;大豆疫霉Rab GTPase家族蛋白PsVPS21功能分析[D];南京农业大学;2014年
3 苏黎明;大豆疫霉效应分子PsCRN78的功能分析[D];南京农业大学;2014年
4 刘晓云;大豆疫霉ATP结合盒式蛋白PsABCF1的功能分析[D];南京农业大学;2014年
5 朱华;大豆疫霉生防菌AC29的分离、鉴定与生防机制初步研究[D];南京农业大学;2014年
6 黄慧文;大豆疫霉生防菌T201的筛选、鉴定及其生防效果的研究[D];南京农业大学;2014年
7 杨智娟;大豆疫霉琥珀酸脱氢酶相关基因PsSDHA的克隆与功能分析[D];安徽农业大学;2015年
8 冷冰雪;安徽宿州地区大豆疫霉的分离与鉴定[D];安徽农业大学;2015年
9 蒋绿荣;安徽怀远地区大豆疫霉的鉴定及rDNA-ITS序列分析[D];安徽农业大学;2015年
10 叶涛;大豆疫霉琥珀酸脱氢酶B亚基克隆与功能分析[D];安徽农业大学;2016年
,本文编号:2452598
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2452598.html