黄土塬区玉米大豆间作系统水分利用研究
[Abstract]:The issue of food security has been one of the main challenges and problems to be solved in the sustainable development of human society. The precipitation is small, the time-space distribution is not uniform, and the soil fertility is low, and the water use efficiency and the productivity of the crops are greatly limited. How to improve the water use efficiency becomes an important direction of agricultural research in the region. The corn-soybean intercropping can utilize the nitrogen fixation of the soybean to provide the nitrogen fertilizer for the corn, improve the yield and the water use efficiency, and simultaneously reduce the use amount of the fertilizer. Therefore, the corn-soybean intercropping has the potential to improve the water-deficient and fertilizer-free status of the crop region, so as to provide theoretical basis and practical guidance for crop cultivation in the region. In this study, field experiments were conducted to study different crop varieties (maize: Zhengdan 958 and Yuyu 22; soybean: medium yellow 24 and medium yellow 13), density gradient (low, medium and high), planting ratio (single cropping of corn, corn: soybean = 2:2; corn: soybean = 2:4; corn: The effects of soybean = 4:2; single-cropping soybean) on the growth and development, physiological characteristics, yield, economic benefit, nutrient and water utilization of maize-soybean, and provide the basis for the selection of reasonable planting methods of the crops and the sustainable development of agriculture. The main conclusions are as follows: (1) The land equivalent ratio of maize-soybean intercropping under different varieties, density and planting ratio is between 0.90 and 1.29. In addition to the 2:2 intercropping of the maize and the soybean in 2014, the land equivalent ratio of the other intercropping is greater than 1, indicating that the reasonable corn-soybean intercropping can improve the intercropping yield and the efficiency of the land use, and has the intercropping advantage. (2) The competition index (the occupation force and the competition ratio) of the corn were higher than that of the soybean, indicating that the corn-soybean intercropping system was the dominant species. The actual yield loss (AYL) in the intercropping system was positive, indicating that the yield of the maize in the intercropping system was increased, while the soybean AYL was negative in most intercropping systems, indicating that the yield of the soybean in the intercropping system was different and the intercropping system AYL was positive, It is shown that maize-soybean intercropping has intercropping advantage in yield. The system productivity index (SPI) is an index to characterize the productivity and stability of intercropping systems. The results show that the intercropping system considered has higher productivity and stability. In the maize-soybean intercropping system, the economic performance of the corn is increased (the intercropping advantage of the corn is IA0), and the soybean performance is the yield reduction (the soybean I0), and the economic benefit advantage of the intercropping system under the comprehensive action (the intercropping system IA0) is formed. The monetary advantage index is positive, indicating that the corn-soybean intercropping system has the economic advantage. Therefore, the intercropping advantage of maize-soybean intercropping is mainly due to the increase of corn yield and the increase of economic benefit. (3) With respect to Yuyu 22 and soybean intercropping, the corn variety Zheng single 958 and soybean variety (middle yellow 24 and medium yellow 13) have better intercropping advantage in the yield and economic benefit. In the intercropping, the AYL, SPI and IA of Zhengdan 958 were higher than that of Yuyu 22, indicating that the drought-resistant variety, Zhengdan 958, was beneficial to the improvement of intercropping. (4) The composition of the yield of corn and soybean decreased with the increase of planting density. The intercropping increased the ear weight, the ear length, the ear length, the ear weight, the number of grains and the 1000-grain weight of the corn, thereby obviously improving the yield of the single plant and the yield of the group of the corn. The number and the number of grains per plant of most of the soybean were not changed or decreased by intercropping, and the yield of single plant and the yield of the population decreased. The corn AYL was positive at all planting rates, indicating an increase in the yield of maize in all intercropping patterns. The majority of the 2:4 ratio of the soybean AYL was positive, while the 2:2 ratio of the soybean AYL was negative, indicating that the 2:4 planting ratio was 2:2 and the yield of the soybean was increased. (5) The intercropping of intercropping has no significant effect on the photosynthetic rate of maize and soybean. the intercropping increases the absorption of the nitrogen and the phosphorus by the corn crops, and the water consumption of the corn and the soybean is influenced by the intercropping through the influence of the water transport capacity of the root system, So as to improve the water use efficiency of the crops. (6) Compared with the average water use efficiency (WUE) of single-cropping soybean and 2 crops, the intercropping of maize and soybean increased the intercropping of WUE, maize and soybean at the ratio of 4:2. Compared with the single cropping system, the intercropping system enlarges the spatial distribution (root length density) of the lateral and longitudinal directions of the root systems of the two crops, changes the morphological characteristics of the root system of the crops, and increases the ecological position of the corn and the soybean root system to absorb water, thereby improving the absorption and utilization of the water by the crops. (7) There was a negative correlation between the root length density and the land equivalence ratio of maize-soybean intercropping. when intercropping with other planting ratios, the corn-soybean produced more roots when intercropping with 2:2, at the expense of the accumulation of the yield in the sacrifice of reproductive growth, This indicates that the main reason for the increase in yield and WUE is that there is a reasonable trade-off between the development of the root system and the formation of the yield between the corn and the soybean.
【学位授予单位】:中国科学院研究生院(教育部水土保持与生态环境研究中心)
【学位级别】:博士
【学位授予年份】:2016
【分类号】:S513;S565.1
【相似文献】
相关期刊论文 前10条
1 佟屏亚;;介绍一册别具视角的玉米著作——《玉米与资本主义》[J];古今农业;2007年02期
2 尚可;;走下神坛的玉米[J];海洋世界;2011年07期
3 韩长赋;;玉米论略[J];农家参谋(种业大观);2012年06期
4 张乃凤 ,白磊;中国也能发展一个玉米带[J];土壤肥料;1981年02期
5 王昌瑞;玉米带叶去雄[J];新农业;1982年13期
6 ;洋芋玉米带田增产显著[J];甘肃农业科技;1982年03期
7 王佩祥;;谈谈玉米的安全保管[J];中国农垦;1986年06期
8 佟屏亚;;玉米环球旅行记[J];种子世界;1986年01期
9 佟屏亚;世界玉米产销形势及发展预测[J];世界农业;1987年05期
10 John Fraser Hart,郭谦;美国玉米带的变迁[J];世界农业;1987年09期
相关会议论文 前10条
1 杨生茂;芦满济;邱进怀;;甘肃省河西灌区小麦/玉米带田施N量及其环境效应[A];氮素循环与农业和环境学术研讨会论文(摘要)集[C];2001年
2 佟屏亚;;论中国发展玉米生产的科技导向[A];全面建设小康社会——中国科协二○○三年学术年会农林水论文精选[C];2003年
3 刘开昌;王庆成;;入世后山东省玉米生产发展战略[A];全面建设小康社会——中国科协二○○三年学术年会农林水论文精选[C];2003年
4 黄辉;;玉米生产、市场与技术发展情况的思考[A];第五届中国农业推广研究征文集[C];2006年
5 杨生茂;郭天文;;河西绿洲灌区小麦/玉米带田施氮量及其环境效应[A];《氮素循环与农业和环境》专辑——氮素循环与农业和环境学术讨论会论文集[C];2001年
6 秦太辰;;景观玉米的塑造思路、方法与育种原理[A];2012年全国玉米遗传育种学术研讨会暨新品种展示观摩会论文及摘要集[C];2012年
7 武明宇;郝楠;;浅谈玉米抗旱性的研究进展[A];全国旱情监测技术与抗旱减灾措施论文集[C];2009年
8 刘志忠;刘雅君;;小麦套玉米秋浇覆膜节水新技术试验研究[A];科技创新与经济结构调整——第七届内蒙古自治区自然科学学术年会优秀论文集[C];2012年
9 张久东;包兴国;曹卫东;车宗贤;胡志桥;卢秉林;杨文玉;李全福;;间作绿肥作物对玉米产量和土壤肥力的影响[A];面向未来的土壤科学(下册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集[C];2012年
10 戴景瑞;王守才;谢友菊;王国英;杨会;张荣;;玉米基因工程与抗虫玉米育种[A];21世纪作物科技与生产发展学术讨论会论文集[C];2002年
相关重要报纸文章 前10条
1 郭清保;饲企需求降低拖累玉米上涨[N];期货日报;2006年
2 东华期货研发部 陶金峰;利空为玉米期市热情泼凉水[N];证券时报;2006年
3 格林期货 崔家悦;玉米震荡行情将维持多久[N];证券时报;2008年
4 李永合;丰润时兴玉米带棒青贮[N];中国畜牧报;2004年
5 本报记者 刘旭;玉米市场:出口萎缩引发躁动[N];国际商报;2004年
6 ;玉米拍卖未有惊喜 震荡之路仍将延续[N];中国畜牧兽医报;2009年
7 文华;做大玉米经济势在必行[N];粮油市场报;2002年
8 于德运 李曦;做强玉米经济要提升理性思考[N];吉林日报;2005年
9 本报实习记者 叶斯琦;新玉米集中上市 静待临储指引[N];中国证券报;2014年
10 闻有成;玉米仍是东北来钱产业[N];经济参考报;2003年
相关博士学位论文 前10条
1 刘志鹏;玉米12个农艺性状的全基因组关联分析及玉米氮响应相关基因的鉴定[D];中国农业大学;2015年
2 陈国栋;间作小麦玉米的水分竞争与生态位分离机制[D];甘肃农业大学;2015年
3 慈佳宾;玉米DH育种关键技术研究及不同类型DH系遗传分析[D];吉林农业大学;2015年
4 叶辉;不同环境下玉米内源激素变异对叶序分化类型的影响研究[D];安徽农业大学;2012年
5 苏本营;玉米-大豆带状套作系统碳平衡研究[D];四川农业大学;2014年
6 任媛媛;黄土塬区玉米大豆间作系统水分利用研究[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2016年
7 王少杰;黄土高原旱作覆膜玉米不同时期施氮效果及气态氮损失[D];中国科学院研究生院(教育部水土保持与生态环境研究中心);2016年
8 刘月娥;玉米对区域光、温、水资源变化的响应研究[D];中国农业科学院;2013年
9 郝转芳;玉米耐旱主效QTL定位与候选基因鉴定[D];中国农业科学院;2005年
10 李美;玉米花生间作群体互补竞争及防风蚀效应研究[D];沈阳农业大学;2012年
相关硕士学位论文 前10条
1 闫成辉;玉米自交系87-1BAC文库的构建及Cms-C恢复基因Rf4区域BAC克隆的筛选[D];河南农业大学;2011年
2 欧阳伟;伊犁垦区制种玉米区划及可持续发展对策的研究[D];石河子大学;2014年
3 闫平;黑龙江省玉米种植变化原因及利弊分析[D];东北农业大学;2015年
4 史倩倩;少耕秸秆覆盖对小麦间作玉米农田碳排放的协同作用[D];甘肃农业大学;2015年
5 闫妍名;不同栽培模式对玉米产量形成及水温和氮素利用的影响[D];甘肃农业大学;2015年
6 秦亚洲;根冠互作对小麦间作玉米水分利用效率的影响[D];甘肃农业大学;2015年
7 马慧慧;阜阳地区玉米品种生态适应性的分析[D];安徽农业大学;2014年
8 刘洪亮;吉林省高寒山区玉米品种筛选[D];东北农业大学;2014年
9 王维俊;伊宁县玉米生产存在问题及发展对策研究[D];新疆农业大学;2015年
10 赵宗潮;转植酸酶基因玉米自然生态风险评估及其防控技术研究[D];南京农业大学;2014年
,本文编号:2499217
本文链接:https://www.wllwen.com/shoufeilunwen/nykjbs/2499217.html