指挥控制知识自动化关键技术研究
[Abstract]:The form of war in the 21st century is an integrated joint operation under the condition of networked system. In order to make the army become an interconnected networked entity, and create the information superiority of the battlefield, and then form the combat advantage, Therefore, the automation of command and control knowledge is the key problem to be solved. There are many technical problems to be solved in the field of command and control knowledge automation. This paper aims at sharing all kinds of distributed and heterogeneous battlefield information under the joint information environment in the field of command and control knowledge automation. Research on exchange and storage technology. First of all, because of the complexity of multi-source and heterogeneity of joint battlefield information, and the existing command and control information systems generally exist information "chimney" problem, it can not meet the needs of joint operations under the network system. Based on the semantic web theory and knowledge engineering method, this paper proposes a general framework for distributed heterogeneous battlefield information sharing, exchange and storage based on semantic web, which provides the basic theoretical support for the automation of command and control knowledge. Second, when all battlefield information is integrated into a resource description framework (RDF,Resources Description Framework) data sharing), in order to enable existing command and control systems based on relational databases to access shared information in the form of RDF, Based on Jena framework and ontology to relational database mapping technology, we propose and implement a method to convert RDF data to relational database. In order to achieve the goal of information sharing on the basis of the existing command and control system of all arms and arms. Third, with the exponential growth of joint battlefield information, the traditional relational database can not satisfy the efficient storage and query of massive RDF. The distributed management of battlefield information RDF data is the inevitable trend of big data in the future. In view of this situation, we focus on research and propose a massive battlefield information consistent RDF storage and query method based on Hadoop. A distributed file system based on Hadoop is constructed (HDFS,Hadoop Distributed File System), uses HDFS's non-relational database HBase to realize the storage and query of massive military RDF; In addition, in order to improve the storage efficiency of massive battlefield information RDF data, a method of data analysis through distributed computing MapReduce is proposed to realize the efficient storage, real-time query and mining of massive military RDF data. To provide a strong guarantee for operational decisions. Fourthly, based on the Eclipse integrated development environment, a prototype software platform for storing and querying massive battlefield information RDF data is designed and implemented. The software platform integrates the conversion of RDF data to relational database. The storage and query of massive battlefield information RDF data, computer cluster state management and other functions verify the feasibility of this technical scheme, and provide a strong support for joint operations.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:E86;TP311.13
【参考文献】
相关期刊论文 前10条
1 乌尔柯西;杨抒;王业;游香薷;;一种基于知识工程的DeepWeb信息抽取方法[J];计算机技术与发展;2016年09期
2 桂卫华;陈晓方;阳春华;谢永芳;;知识自动化及工业应用[J];中国科学:信息科学;2016年08期
3 伍文峰;胡晓峰;;基于大数据的网络化作战体系能力评估框架[J];军事运筹与系统工程;2016年02期
4 李明明;李伟;;基于HDFS的高可靠性存储系统的研究[J];西安科技大学学报;2016年03期
5 李媛祯;杨群;赖尚琦;李博涵;;一种Hadoop Yarn的资源调度方法研究[J];电子学报;2016年05期
6 王伟;陶然;;基于虚拟化技术的Hadoop集群搭建与应用[J];软件导刊;2016年04期
7 崔冰;刘英辉;;信息化条件下联合作战战斗力的生成[J];中国管理信息化;2016年08期
8 陈晓;;大数据时代知识自动化的关键问题、对策及展望[J];科技视界;2016年09期
9 王媛媛;吕晓丹;胡琪;吴鸿川;;基于HBase的RDF数据存储方案研究与设计[J];信息网络安全;2016年03期
10 王然;程晓荣;;基于开源搜索引擎Nutch的研究与实现[J];电脑编程技巧与维护;2015年19期
相关硕士学位论文 前10条
1 张振猛;基于Hadoop的海量文件存储系统的分析与设计[D];北京工业大学;2015年
2 马翠云;基于HBase的大规模数据存储解决方案的设计和实现[D];山东大学;2015年
3 付文静;基于HBase的大数据存储查询技术研究[D];电子科技大学;2015年
4 王华;基于YARN的数据挖掘系统的设计与实现[D];北京邮电大学;2015年
5 姚香菊;基于本体的异构数据集成技术的研究[D];东华大学;2015年
6 熊逵;基于SPAROL的语义网数据查询系统的设计与实现[D];浙江大学;2015年
7 卢传耀;基于NoSQL的RDF存储与冗余消除的研究与实现[D];南京航空航天大学;2014年
8 陈虎;基于HDFS的云存储平台的优化与实现[D];华南理工大学;2012年
9 张伟奇;基于关系型数据库的RDF存储引擎[D];天津大学;2012年
10 金志敏;一个RDF Schema处理器的设计与实现[D];东南大学;2004年
,本文编号:2367060
本文链接:https://www.wllwen.com/shoufeilunwen/shuoshibiyelunwen/2367060.html