基于轮廓误差的新型混联式汽车电泳涂装输送机构同步协调控制研究
[Abstract]:In the modern automobile manufacturing industry, painting is the key process, and the conveyor works in the whole process of automobile painting production line. Its performance has a great impact on the surface treatment effect of the white body. Under the support of the National Natural Science Foundation of China (51375210), a new type of automotive electrophoretic coating conveyor was developed based on the hybrid mechanism to compensate for the shortcomings of the above conveyor. The new conveyor developed by our research group has many advantages. There is coupling between active joints and two symmetrical mechanical structures, so synchronous coordination between active joints affects the overall performance of the mechanism. For a new type of hybrid transmission mechanism, when the kinematics and dynamics control method is used directly in the series mechanism, it is neglected that the hybrid mechanism includes more than one. In order to ensure the smooth and reliable operation of the conveying mechanism in various working environments, it is necessary to improve the synchronous coordination among the active joints. Firstly, the tracking error, synchronous error and design between the active joints are defined. A synchronous coordination controller based on active joint synchronization error is proposed. However, although the tracking error of active joints is reduced, the reduction of tracking error does not necessarily reduce the contour error, so it is difficult to guarantee the tracking accuracy of the end of the mechanism. In the system, the main index to measure the tracking accuracy of the end trajectory of the mechanism is the contour error. The other errors in the hybrid mechanism system all respond to the contour error eventually. Therefore, in order to improve the tracking accuracy of the end trajectory of the mechanism, a method for estimating the contour error of the end trajectory of the mechanism is proposed, and a method based on the contour error is designed. Synchronous coordinated controller can not only reduce the tracking error and synchronous error of active joints, but also improve the trajectory tracking accuracy of the end of the mechanism. Firstly, this paper summarizes the development of existing automotive electrophoretic coating conveyor and hybrid mechanism, and the research status of contour error control based on it. The kinematics and dynamics analysis of the transport mechanism of automotive electrophoretic coating are carried out, and the results of kinematics and dynamics analysis are simulated by MATLAB. The simulation results show the correctness of kinematics analysis and dynamics analysis. At the same time, the transport is determined according to the requirements of automotive electrophoretic coating process and the parameters of the prototype developed by reducing the proportion. The desired trajectory of the end effector of the mechanism is analyzed, and the workspace of the prototype is analyzed, and the schematic diagram of the workspace is given. Secondly, in order to solve the problem of synchronous coordination among the moving branches and chains in the running process of the conveyor mechanism and the problem of the error of the end contour of the prototype, a passing phase is proposed according to its structure and motion characteristics. Active joint synchronization error is defined by the deviation of tracking error of adjacent active joints, and an active joint synchronization and coordination controller is designed based on the deviation of tracking error of adjacent active joints. Compared with the active joint synchronous coordinating controller, the simulation results show that the control algorithm has higher trajectory tracking accuracy and further improves the synchronous coordinating motion performance of the conveying mechanism because of further reducing the profile error of the end of the mechanism. According to the control requirements of conveyor mechanism, a prototype experimental platform of conveyor mechanism is constructed, and the control experiment of conveyor mechanism is completed based on this platform. The experimental results further verify the effectiveness of the controller based on contour error control designed in this paper.
【学位授予单位】:江苏大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:U468.2;TP273
【参考文献】
相关期刊论文 前10条
1 庄丙远;赵国勇;翟静涛;侯春宏;;双转台五轴联动数控机床轮廓误差控制方法[J];组合机床与自动化加工技术;2016年06期
2 高国琴;陈太平;方志明;;新型汽车电泳涂装输送机构的动力学建模[J];机械工程学报;2016年21期
3 白一尚;王东勃;朱锋;靳广在;;基于CCC的移动目标模拟器轮廓误差控制与仿真[J];机械科学与技术;2016年02期
4 牛雪梅;高国琴;刘辛军;鲍智达;;新型驱动冗余并联机构动力学建模及简化分析[J];机械工程学报;2014年19期
5 郭希娟;张涛;王玉镇;奚风丰;;一种共轴混联机构的运动学分析[J];机械工程学报;2014年11期
6 陈小立;严宏志;温广旭;;基于遗传算法的四自由度混联机器人轨迹规划[J];计算机仿真;2014年05期
7 田浩;余跃庆;;柔顺关节并联机器人动力学建模与控制研究[J];农业机械学报;2014年05期
8 赵欢;朱利民;丁汉;;基于高精度轮廓误差估计的交叉耦合控制[J];机械工程学报;2014年03期
9 Xue-Mei Niu;Guo-Qin Gao;Xin-Jun Liu;Zhi-Da Bao;;Dynamics and Control of a Novel 3-DOF Parallel Manipulator with Actuation Redundancy[J];International Journal of Automation and Computing;2013年06期
10 孙自松;许能才;李建国;万德俊;申标;;Rodip系统在涂装电泳线上的应用[J];汽车工艺与材料;2013年08期
相关博士学位论文 前9条
1 牛雪梅;新型3-DOF驱动冗余并联机构动力学建模及其滑模控制研究[D];江苏大学;2014年
2 张刚;直驱精密平面并联运动平台的动力学建模与轮廓控制[D];上海交通大学;2014年
3 梁顺攀;五自由度冗余驱动并联机构性能分析与力/位混合控制研究[D];燕山大学;2013年
4 郝齐;一种两自由度并联机构优化设计及动力学控制研究[D];清华大学;2011年
5 陈月岩;串—并混联研抛机床运动控制系统的研究[D];吉林大学;2009年
6 杨永刚;6-PRRS并联机器人关键技术的研究[D];哈尔滨工业大学;2008年
7 尚伟伟;平面二自由度并联机器人的控制策略及其性能研究[D];中国科学技术大学;2008年
8 刘玉斌;一种新型6-PRRS并联机器人系统的研究[D];哈尔滨工业大学;2007年
9 张耀欣;高性能平面二自由度并联机器人研究[D];中国科学技术大学;2007年
相关硕士学位论文 前10条
1 陈太平;新型混联式汽车电泳涂装输送机构动力学建模及二阶滑模控制研究[D];江苏大学;2016年
2 曹祥;混联式输送机构的计算机控制系统构建及考虑执行器饱和的控制研究[D];江苏大学;2016年
3 黄敏;新型混联式汽车电泳涂装输送机构结合扰动观测器的滑模控制[D];江苏大学;2016年
4 周延松;三轴数控系统的轮廓误差补偿方法研究与实现[D];浙江工业大学;2013年
5 黄天宇;新型少自由度混联机构的力学分析[D];燕山大学;2013年
6 田培涛;并联机器人运动误差分析与补偿方法研究[D];燕山大学;2012年
7 姚莉君;三自由度平动并联机构的动力学与控制系统研究[D];南京航空航天大学;2012年
8 孔繁星;切线回转法加工高次非球面光学零件轨迹成形控制研究[D];长春理工大学;2010年
9 刘凉;3-RRRU并联机器人运动学控制的研究[D];天津理工大学;2010年
10 朱加辉;两轮自平衡小车反馈线性化及变结构控制研究[D];西安电子科技大学;2010年
,本文编号:2216324
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2216324.html