基于统计特征的维吾尔文离线手写签名鉴别技术研究
[Abstract]:Handwritten signature authentication, as a biometric authentication technology, has been widely accepted and applied in finance, law, commerce and so on. At present, handwritten signature authentication techniques based on English, Arabic and Chinese have obtained more mature research results, while Uighur based handwritten signature verification is still in an initial stage in this field. Therefore, the further study of Uygur handwritten signature authentication is of great practical application and practical value in making up for and perfecting the off-line signature authentication system of minority nationalities in China. This paper mainly focuses on Uygur handwritten signature authentication technology in off-line state. The research work includes three parts: signature sample collection and pretreatment, feature extraction, classification and authentication. In the preprocessing stage, the noise and interference signals on the signature image are overcome by grayscale, binarization, smooth denoising, normalization and so on. In the phase of feature extraction, according to the writing style and characteristics of Uygur handwritten signature, four different scans are performed on each signature sample image to propose a 16-dimensional directional feature. Secondly, based on the feature extraction method of directional features, an improved 48-dimensional directional feature is proposed based on the statistic of the black pixel information of signature handwriting in six different directions. Finally, based on the energy, entropy, moment of inertia and local stationarity of the gray level co-occurrence matrix, the feature weighted fusion method is used to extract the fusion features and determine the optimal weights suitable for Uygur handwritten signature authentication. In the phase of classification and authentication of signature images, three distance classifiers, Euclidean distance, chi-square distance and Manhattan distance, are used for the two directional features proposed in this paper. The weighted fusion feature of gray level co-occurrence matrix is verified by BP neural network. In the experiment, 900 handwritten signature samples of 15 people (20 original signature samples / 20 simple imitation pseudo-signature samples per person / 20 skilled imitation pseudo-signature samples / each) were selected from the Uygur handwritten signature sample database. Finally, the highest signature authentication rate obtained by the three signature authentication methods used in this paper is 88.61% and 91.78% respectively.
【学位授予单位】:新疆大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 刘晟桥;牛连强;冯庸;;一种改进的退化文本图像二值化方法[J];智能计算机与应用;2016年04期
2 库尔班·吾布力;热依买·阿不力克木;努尔毕亚·亚地卡尔;阿力木江·艾沙;吐尔根·依布拉音;;基于密度特征的维吾尔文离线签名识别[J];计算机工程与设计;2016年08期
3 曾凡锋;王战东;郭正东;;非均匀光照文档图像快速二值化方法[J];计算机应用与软件;2015年11期
4 牧其尔;包玉海;;基于灰度—梯度共生矩阵的遥感影像纹理信息提取方法研究[J];内蒙古科技与经济;2015年05期
5 刘天时;肖敏敏;李湘眷;;融合方向测度和灰度共生矩阵的纹理特征提取算法研究[J];科学技术与工程;2014年32期
6 任国贞;江涛;;基于灰度共生矩阵的纹理提取方法研究[J];计算机应用与软件;2014年11期
7 唐有宝;卜巍;张恩泽;邬向前;;基于ASIFT的离线签名认证方法[J];北京航空航天大学学报;2015年01期
8 古丽热娜·阿布里孜;库尔班·吾布力;卡米力·木依丁;艾斯卡尔·艾木都拉;;基于多分辨几何特征的维吾尔文脱机签名识别[J];计算机工程与应用;2013年16期
9 王洪革;宋晓雪;潘石;;基于信息熵的静态手写汉字签名鉴定研究[J];计算机应用与软件;2013年01期
10 杨丹凤;吕岳;;方向特征和网格特征融合的离线签名鉴别[J];中国图象图形学报;2012年06期
相关博士学位论文 前2条
1 许亚美;手写维吾尔文字识别若干关键技术研究[D];西安电子科技大学;2014年
2 文静;脱机签名识别中的关键问题研究[D];重庆大学;2009年
相关硕士学位论文 前9条
1 杨晓萌;面向农信社的票据签名鉴别系统研究[D];西北大学;2014年
2 谢文修;基于多级DTW匹配的联机手写签名鉴别研究[D];南昌大学;2013年
3 张立;离线灰度手写签名鉴别[D];武汉科技大学;2012年
4 杨丹凤;基于方向特征的离线签名鉴别[D];华东师范大学;2012年
5 胡丽娜;低质量文档图像的二值化研究[D];南京理工大学;2012年
6 龙建武;基于Otsu的图像阈值分割算法的研究[D];吉林大学;2011年
7 焦松林;离线中文签名鉴定系统的关键技术研究[D];长春工业大学;2011年
8 宋艳霞;基于Bayes决策理论的脱机手写签名识别研究[D];天津师范大学;2010年
9 尤庆成;基于HMM-SVM混合模型的在线手写签名认证[D];中国科学技术大学;2010年
,本文编号:2293173
本文链接:https://www.wllwen.com/shoufeilunwen/xixikjs/2293173.html