掌静脉识别算法研究
[Abstract]:With the development of science and technology, people pay more and more attention to the security problem. How to identify a person accurately and reliably has become an urgent problem. The traditional identification mechanism is easy to steal and copy, which can not meet the requirements of high security. Biometric recognition technology is an effective way to solve this problem. Among them, metacarpal vein recognition technology is a kind of biometric recognition technology developed in recent years, which has the advantages of high anti-counterfeiting, high recognition accuracy and easy to be accepted by users. This paper mainly focuses on the palmar vein recognition algorithm, studies and compares the ROI (Region of Interest, image acquisition and ROI image enhancement and denoising methods. In this paper, the extraction and matching method of NBP (Neighbor based Binary Pattern, nearest neighbor binary pattern) feature is studied, and a method of palmar vein recognition based on texture feature and local invariant feature is proposed, which is based on sift (Scale Invariant Feature Transform, scale invariant feature. The main work and research results of this thesis are as follows: 1. The acquisition and preprocessing of ROI images of metacarpal vein recognition were preliminarily studied and compared. The method of ROI image extraction based on palm rectangle and CLAHE (Contrast Limited Adaptive histogram equalization, restricted contrast adaptive histogram equalization method and median filter method are selected to enhance and de-noise the image so as to achieve the best effect of subsequent experiments. 2. Two methods of palmar vein recognition based on NBP feature and SIFT feature are studied. In view of the disadvantages of the traditional RANSAC (Random Sample Consensus, random sampling algorithm in SIFT matching process, a method based on similarity distance is proposed to eliminate the error matching points, which can improve the efficiency and accuracy of error matching points elimination. The application of SIFT algorithm in metacarpal vein recognition is more accurate. Then, the experiment is designed to compare and analyze the two methods of palmar vein recognition, and the performance characteristics of the two algorithms are obtained, which provide the basis and train of thought for the subsequent fusion of the two algorithms. In view of the advantages and disadvantages of the two algorithms mentioned above, this paper analyzes the feasibility of the fusion of the two algorithms by analyzing the SIFT as a global feature, and sift as a local feature by analyzing the feasibility of the fusion of the two algorithms. The two have strong complementarities for different palm image differentiation and the same palm image matching degree, and the NBP feature can also make up for the disadvantage of non-real-time SIFT feature in the experimental time. In terms of robustness, SIFT features can make up for the disadvantage of poor robustness of NBP features on large displacement. It is concluded that the two algorithms are very suitable for information fusion. A palmar vein recognition algorithm based on texture feature and local invariant feature is proposed. The recognition rate of metacarpal vein algorithm was improved, and the correct recognition rates were 99.114% and 99.722% in PolyU palmprint database and laboratory self-mining database, respectively.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41
【参考文献】
相关期刊论文 前10条
1 林森;吴微;苑玮琦;;采用纹理近邻模式的掌静脉生物特征识别研究[J];仪器仪表学报;2015年10期
2 桑海峰;武红娇;何大阔;;手形、掌纹和掌静脉多特征融合识别[J];仪器仪表学报;2015年06期
3 吴微;苑玮琦;林森;宋辉;桑海峰;;基于灰度曲面匹配的快速手掌静脉识别[J];光学学报;2013年10期
4 吴微;苑玮琦;林森;宋辉;张洪涛;;手掌静脉识别中感兴趣区域的选择与定位研究[J];光电子.激光;2013年01期
5 桑海峰;赵云;苑玮琦;陈静;;基于人手自然张开的多生物特征识别[J];仪器仪表学报;2011年11期
6 李秀艳;刘铁根;邓仕超;何瑾;王云新;;基于SURF算子的快速手背静脉识别[J];仪器仪表学报;2011年04期
7 孙浩;王程;王润生;;局部不变特征综述[J];中国图象图形学报;2011年02期
8 秦斌;;手静脉身份识别技术[J];现代电子技术;2011年04期
9 苑玮琦;董茜;桑海峰;;基于方向梯度极值的手形轮廓跟踪算法[J];光学精密工程;2010年07期
10 王云新;刘铁根;江俊峰;张忠传;周苏晋;;基于局部SIFT分析的手背静脉识别[J];光电子.激光;2009年05期
相关博士学位论文 前6条
1 颜学葵;掌静脉识别算法研究[D];华南理工大学;2015年
2 李威;非接触成像方式下手掌特征提取方法研究[D];沈阳工业大学;2013年
3 张环;掌纹掌脉及其融合识别技术研究[D];国防科学技术大学;2011年
4 李强;掌静脉身份识别技术的理论与实验研究[D];华中科技大学;2010年
5 李铁钢;静脉识别算法研究[D];吉林大学;2007年
6 祝恩;低质量指纹图像的特征提取与识别技术的研究[D];国防科学技术大学;2005年
相关硕士学位论文 前8条
1 梅尚健;基于特征融合的图像检索研究与实现[D];西南交通大学;2015年
2 孟昭慧;基于二次判别和局部信息及特征融合的手静脉识别[D];复旦大学;2014年
3 胡云朋;基于多特征融合的手背静脉识别算法研究[D];天津理工大学;2014年
4 方婷;全手掌静脉识别算法研究[D];沈阳工业大学;2013年
5 郭晶;基于特征点的多幅图像拼接技术研究[D];西安科技大学;2012年
6 佟海滨;手掌静脉识别系统[D];沈阳工业大学;2012年
7 陈梓毅;基于掌纹和手背静脉的多模态生物认证系统的设计与实现[D];华南理工大学;2011年
8 陈志雄;基于图像配准的SIFT算法研究与实现[D];武汉理工大学;2008年
,本文编号:2168633
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2168633.html