基于电荷和激子分布调控研究高性能有机白光二极管
[Abstract]:Organic light-emitting diode (OLED) has high efficiency, good color purity, low power consumption, wide angle of view, fast response, active luminescence, ultra-thin ultra light and flexible folding and so on. It has a broad application prospect in the field of display and lighting. It has become a hot topic in the field of attention of scholars and industry. In order to further improve the performance of OLED, improve the performance and improve the performance of the organic light emitting diode The high performance research of OLED (especially the white light OLED, WOLED) is of great significance in the competitiveness of the display and lighting market. The history of the development of OLED, the status of the research, the structure of the device, the working mechanism and the related important physical concepts are summarized in this paper, and the four types of WOLED (full phosphor WOLED, full phosphor WOLED, hybrids) are introduced. WOLED, delayed fluorescence WOLED). Through the use of different methods to regulate the distribution of charge and exciton in devices, the charge injection and transmission, exciton formation and diffusion, exciton capture and recombination in WOLED devices are clarified, and a series of high performance WOLED are developed. The main innovative results are as follows: 1) use the object modulation. In order to control the distribution of charge and exciton, a simple single light layer device is designed. A full phosphor WOLED device with simple structure, high efficiency, low efficiency, low efficiency and good color stability is developed. The maximum luminous efficiency and power efficiency of the device are 113.6 cd/A and 95.5 lm/W. respectively at 1000 cd/m2, and the luminous efficiency can reach 111.7 cd/A or 7. 5.5 lm/W, for the most efficient single light layer WOLED. in the published scientific literature, the chromaticity of the device is stable and its color coordinates are basically unchanged in the working luminance range. The paper studies the role of the object in stabilizing the color coordinates, and confirms that the distribution of the charge and exciton can stabilize the light color.2 system through the object control. The effect of N spacer layer on the performance of hybrid WOLED was investigated. It was found that the three line state energy level of the N interlayer has greater influence on the performance of the device than the electron mobility or hole blocking ability. By choosing a more effective Bepp2 (phenylpyridine beryllium) as the spacer layer, the long life hybrid WOLED. is utilized under the initial brightness of 1000 cd/m2. The accelerated aging test method has estimated life over 30 thousand hours. This achievement has a certain reference for designing new device structure and improving WOLED luminescence life.3). A high-performance deep blue aggregation induced OLED device has been developed. The performance of the device is: chromaticity coordinates (0.17,0.14), luminescence peak 449 nm, bright voltage 2.75 V, and maximum brightness 17721 Cd/m2, the maximum efficiency is 4.3 lm/W, the efficiency of 1000 cd/m2 is 3.6 lm/W, and the efficiency is reduced. A series of high performance hybrid WOLED. is prepared by using the blue aggregation induced luminescent material for the first time. For the dual color hybrid WOLED:1), when the TAPC:TmPyPB ratio of the spacer is 1:0 in the device, the light color stable WOLED is realized and the power efficiency is 32.. 0 lm/W; 2) when the TAPC:TmPyPB ratio of the interlayer is 0.8:0.2, the WOLED device with stable light color, high efficiency and low efficiency rolling down, the power efficiency is 38.9 lm/W; 3) when the TAPC:TmPyPB ratio of the interlayer is 0.5:0.5, the device efficiency is 70.2 cd/A and 43.4 lm/W respectively, when the 10000 cd/m2 brightness is respectively. Finally, blue, yellow and red are used. Three color luminescent materials have developed the first hybrid WOLED with the characteristics of the solar and color temperature. The color temperature can vary from 2328 K to 10690 K. The results show that the use of blue aggregation induced fluorescence is expected to produce high performance hybrid WOLED.4. A class of host and guest combinations have been developed to achieve high efficiency WOLED. for the first time to use NPB as blue. The maximum efficiency of the single luminescent WOLED hybrid WOLED is 65.3 lm/W and the voltage and brightness at 1000 cd/m2 are respectively 2.4 V and 3.45 V., respectively, when the concentration of the dual color WOLED. (dmppy) 2 (DPP) is 1.5%, and the voltage and brightness at 1000 cd/m2, respectively, are 2.4 V and 3.45 V., respectively, to discuss the work of the single light layer hybrid WOLED. In this kind of device, the blue light is provided by the NPB body itself, and the yellow light comes from the Ir (dmppy) 2 (DPP) phosphorescent object. The blue light and the yellow light are produced by the incomplete F? Rster energy transfer and the Dexter energy transfer. The idea is used in the double luminescent layer hybrid WOLED, and the maximum efficiency of the device is 17.2 lm/W and the luminance is 1000cd/m. 10.2 lm/W (3.85 V) at 2 and a color index CRI value of 93, which provides a feasible way to develop a simple structure, low driving voltage, and a high CRI WOLED. A flexible organic white light device is developed. By optimizing the mechanical, electrical and optical properties of the device, the maximum efficiency of the flexible WOLED with a maximum efficiency of 101.3 lm/W is realized, and the brightness is 1000. When cd/m2, the efficiency of the device is 58.2lm/W., when the brightness of the device varies from 100 cd/m2 to 10000 cd/m2, the variation range of color coordinates is only (0.004,0.005), indicating that the color coordinates of the device are stable. This result provides a reference for obtaining high performance flexible WOLED.
【学位授予单位】:华南理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TN383.1
【相似文献】
相关期刊论文 前10条
1 江德生;半导体微结构物理效应及其应用讲座 第三讲 半导体的激子效应及其在光电子器件中的应用[J];物理;2005年07期
2 吴洪;;量子环上的负电荷激子[J];物理学报;2009年12期
3 ;美首次在室温下演示电磁激子发出激光现象[J];光机电信息;2010年07期
4 梁希侠,顾世洧;极性晶体中激子的性质[J];半导体学报;1981年01期
5 庞乾骏;极性晶体中的激子在磁场中的性质[J];半导体学报;1983年03期
6 李长英,张长信,李佳,王新峰;激子开关的研究[J];大连理工大学学报;1997年S2期
7 吴江滨;;激子集成电路[J];物理通报;2008年07期
8 闫占彪;郭震宁;;纳米结构中激子研究进展[J];半导体技术;2005年12期
9 谭天亚;陈俊杰;江雪;;纳米微晶结构氧化锌中激子发光的研究进展[J];激光与光电子学进展;2008年09期
10 杨雄;向少华;宋克慧;;在耦合的激子——光子系统中相干激子态的线性熵演化(英文)[J];怀化学院学报(自然科学);2007年03期
相关会议论文 前10条
1 汤叔ii;;非常色散相互作用维持的激子物质[A];中国物理学会静电专业委员会第十三届学术年会论文集[C];2006年
2 曹昌祺;;激子—激子相互作用与量子阱中激子的共振荧光[A];第九届全国量子光学学术报告会摘要集(Ⅱ)[C];2000年
3 徐士杰;;氧化锌中激子的超快形成过程以及多体Fano共振的时间过程研究[A];2013年(第五届)西部光子学学术会议论文集[C];2013年
4 于暹;郑纪文;刘国兴;陈克良;;激发核趋向平衡态的过程[A];第九届全国核物理大会论文摘要汇编[C];1994年
5 梅增霞;张希清;衣立新;赵谡玲;王晶;李庆福;韩建民;;ZnO薄膜的制备和激子特性的研究[A];第九届全国发光学术会议摘要集[C];2001年
6 杨少鹏;张雪峰;杨雅茹;赵谡玲;徐征;宋丹丹;李艳蕊;李庆;庞学霞;;铱配合物掺杂体系的发光特性研究[A];第11届全国发光学学术会议论文摘要集[C];2007年
7 吴建军;张晓华;王煜;王英特;晋卫军;;卟啉聚集体激发谱中B带与Q带激子耦合的研究[A];第八届全国发光分析暨动力学分析学术研讨会论文集[C];2005年
8 熊祖洪;雷衍连;陈平;刘荣;张勇;;不同染料掺杂体系中的三重态激子湮灭过程[A];全国第八届有机固体电子过程暨华人有机光电功能材料学术讨论会摘要集[C];2010年
9 潘玉钰;李维军;杨兵;马於光;;有机电致发光中高激子利用率“HOT”通道的理论研究[A];中国化学会第29届学术年会摘要集——第15分会:理论化学方法和应用[C];2014年
10 惠萍;;利用B-splines特性计算PbS量子点中的激子基态能量[A];中国科协2005年学术年会论文集——核科技、核应用、核经济论坛[C];2005年
相关重要报纸文章 前3条
1 冯卫东;美研制出首个以激子为基础的电路[N];科技日报;2008年
2 刘霞;美首次观察到激子内自发相干的细节[N];科技日报;2012年
3 刘霞;美首次在室温下演示电磁激子发出激光现象[N];科技日报;2010年
相关博士学位论文 前10条
1 王盼;同质异相的纳米硫化镉的激子复合动力学和自旋极化机制研究[D];吉林大学;2016年
2 周宁;局域表面等离激元与激子的耦合研究[D];浙江大学;2016年
3 刘佰全;基于电荷和激子分布调控研究高性能有机白光二极管[D];华南理工大学;2016年
4 周叶春;有机发光器件性能优化及激子扩散问题研究[D];复旦大学;2007年
5 郭子政;Ⅱ-Ⅵ族半导体异质结构中的激子及其压力效应[D];内蒙古大学;2004年
6 吴勇;利用原位光致发光测量研究有机半导体中的激子过程[D];复旦大学;2007年
7 潘玉钰;热激子反系间窜越实现高效率有机电致发光材料的分子设计原理[D];吉林大学;2015年
8 师全民;聚合物半导体中激子离化及电荷输运特性的研究[D];北京交通大学;2009年
9 邹炳锁;纳米微粒的生成、结构特征和相关的基本光学性质[D];南开大学;1993年
10 赵国军;半导体量子阱中的杂质态和激子的压力效应[D];内蒙古大学;2003年
相关硕士学位论文 前10条
1 段绪东;激子极化激元的布洛赫振荡[D];北京理工大学;2016年
2 黄向南;半导体量子点中多激子的新奇光学特性研究[D];南京大学;2016年
3 陈中海;红荧烯分子间激子裂变的动力学过程研究[D];西南大学;2016年
4 袁德;激子型和电荷转移型有机发光器件中的自旋混合过程[D];西南大学;2016年
5 李婧;红荧烯掺杂薄膜中激子裂变过程的磁场效应研究[D];西南大学;2016年
6 刘俊琳;形变对准一维碳纳米材料中激子效应的影响[D];信阳师范学院;2016年
7 张冰;电子关联对聚合物中激子和双激子极化性质的影响[D];河北师范大学;2009年
8 王智斌;反向偏压下有机阱结构器件的激子离化的研究[D];北京交通大学;2009年
9 郭丽媛;间接激子在抬高量子阱中光致发光的理论研究[D];燕山大学;2015年
10 陈少波;有机聚合物中单激子和双激子极化的研究[D];重庆大学;2014年
,本文编号:2172759
本文链接:https://www.wllwen.com/shoufeilunwen/xxkjbs/2172759.html