晚期糖基化终末产物受体通过稳定β-catenin信号参与调控TDI哮喘气道炎症
本文选题:哮喘 + 甲苯二异氰酸酯 ; 参考:《南方医科大学》2017年博士论文
【摘要】:背景及目的甲苯二异氰酸酯(TDI)是哮喘重要的致病因素之一。其所致的哮喘主要病理特征为气道中性粒和嗜酸性粒细胞浸润及气道重塑,然具体发病机制不明。研究表明,晚期糖基化终末产物受体(RAGE)及β-catenin信号在哮喘发病中扮演重要角色,但其在TDI哮喘中的作用尚未阐明。本研究意在探讨RAGE和β-catenin在TDI哮喘中的作用及其中机制。内容与方法一、建立TDI哮喘模型第1、8天用0.3%TDI经小鼠耳背皮肤致敏,第15、18、21天雾化吸入激发,按激发所用TDI浓度及次数分组:①1%TDI1组:第15天用1%TDI激发1次;②1%TDI2组:第15、18天用1%TDI激发2次;③1%TDI3组:第15、18、21天用1%TDI激发3次;④3%TDI1组:第15天用3%TDI激发1次;⑤3%TDI2组:第15、18天用3%TDI激发2次;⑥3%TDI3组:第15、18、21天用3%TDI激发3次。检测各组小鼠的气道反应性、气道周围炎症细胞、血清IgE、Th1/Th2炎症指标。二、在TDI哮喘模型上干预RAGE按“一”中的方法建立TDI哮喘小鼠模型,激发前经腹腔给RAGE拮抗剂[FPS-ZM1及RAGE antagonist peptide(RAP)],观察各项哮喘指标的变化,同时检测肺组织内β-catenin的表达和分布情况。三、体内干预β-catenin信号构建TDI哮喘小鼠模型,自第1次激发开始连续7天每天给小鼠腹腔注射β-catenin信号阻断剂(XAV-939及ICG-001),观察各项哮喘指标的变化。结果--一、皮肤致敏后经雾化吸入3%TDI激发3次可建立TDI哮喘模型与对照相比,1%TDI1、1%TDI2及3%TDI1组的气道反应性无明显增高,气道周围几无炎症浸润,淋巴上清IL-4、IFN-γ及血清IgE水平亦不高;1%TDI3及3%TDI2组的气道周围可见少许炎症细胞,BALF中性粒细胞数目稍增多,但气道高反应性、IL-4及IFN-γ水平都不高;3%TDI3组的气道反应性增高,支气管周围炎症细胞浸润明显,BALF中炎症细胞显著增多,IL-4、IFN-γ及IgE均升高。二、阻断RAGE可减轻TDI哮喘小鼠气道炎症并抑制TDI诱导的β-catenin活化拮抗RAGE可下调TDI哮喘小鼠RAGE及其配体的表达,减轻TDI诱导的气道高反应性及气道周围炎症浸润,减少BALF中炎症细胞数目,并抑制Th2炎症。同时我们发现,β-catenin在TDI哮喘小鼠肺组织细胞膜上的表达减少,在胞浆及胞核的表达增多;与此一致的是,磷酸化Akt(Ser473)、磷酸化GSK3β(Ser9)及活化的β-catenin水平均升高,而使用RAGE抑制剂可以部分逆转上述这些表现,同时下调TDI诱导的β-catenin靶基因表达。三、阻断β-catenin信号可减轻TDI哮喘小鼠气道炎症β-catenin抑制剂明显减轻了 TDI哮喘小鼠的气道高反应性、气道炎症、气道上皮细胞杯状化生及上皮下胶原沉积,降低了 Th1/Th2炎症介质的水平。结论一、致敏后再经雾化吸入激发可成功建立TDI哮喘模型;二、RAGE参与了 TDI哮喘发病,并参与稳定β-catenin信号;三、β-catenin参与调控TDI哮喘气道炎症及气道重塑。
[Abstract]:Background and objective toluene diisocyanate (TDI) is one of the important pathogenic factors of asthma. The main pathological features of asthma were airway neutrophil and eosinophil infiltration and airway remodeling. It has been shown that the advanced glycosylation end product receptor rage) and 尾 -catenin signal play an important role in the pathogenesis of asthma, but its role in TDI asthma has not been clarified. The purpose of this study was to investigate the role and mechanism of RAGE and 尾-catenin in TDI asthma. Contents and methods: 1. The TDI asthma model was sensitized with 0.3%TDI on the first day of the eighth day by the skin of the mouse's dorsal ear, and then stimulated by atomization inhalation on the 21st day of the 15th day. According to the concentration and times of the TDI used in the stimulation, the mice were divided into two groups: group 1: the TDI was stimulated once with 1%TDI on the 15th day; 21%TDI2 group: on day 1518, 1%TDI was used to excite twice and 31TDI3 group: on the 15th day 1821 days, 3 times with 1%TDI, 3 times with TDI1 group: on the 15th day with 3%TDI, once with 53TDI2 group: on the 15th day with 3%TDI, 2 times with 3%TDI, 3 times with 3%TDI. The airway reactivity, inflammatory cells around the airway and serum IgE Th1 / Th2 inflammation index were measured in each group. Secondly, the mouse model of TDI asthma was established by intervention of RAGE on TDI asthma model according to the method of "one". The changes of asthma indexes were observed by intraperitoneal administration of RAGE antagonists (FPS-ZM1 and RAGE antagonist peptidea Rapp) before stimulation, and the expression and distribution of 尾 -catenin in lung tissue were detected. 3. TDI asthma model was established by in vivo intervention of 尾 -catenin signal. The mice were injected intraperitoneally with 尾 -catenin signal blocker (XAV-939) and ICG-001 (ICG-001) every day since the first stimulation for 7 days to observe the changes of asthma indexes. Results: first, the airway reactivity of 1 TDI 1 TDI 2 and 1 TDI 2 and 3%TDI1 group was not significantly increased and there was no inflammatory infiltration around the airway in the model of TDI asthma induced by atomization inhalation of 3%TDI 3 times after skin sensitization compared with the control group. The levels of IL-4, IFN- 纬 and serum IgE in the lymphoid supernatant were also not high. In the TDI3 and 3%TDI2 groups, the number of inflammatory cells and neutrophils was slightly increased, but the levels of IL-4 and IFN- 纬 in the airway hyperreactivity were not high and the airway reactivity was increased in the TDI3 group. The infiltration of inflammatory cells around the bronchus was obvious and the number of inflammatory cells in BALF was significantly increased. The levels of IFN- 纬 and IgE in BALF were higher than those in BALF. Second, blocking RAGE could reduce airway inflammation in TDI asthmatic mice and inhibit 尾 -catenin activation induced by TDI. Antagonistic RAGE could down-regulate the expression of RAGE and its ligand in TDI asthmatic mice, reduce the airway hyperresponsiveness induced by TDI and the infiltration of inflammation around the airway. Reduce the number of inflammatory cells in BALF and inhibit Th2 inflammation. At the same time, we found that the expression of 尾 -catenin in lung cell membrane of TDI asthmatic mice was decreased, and the expression of 尾 -catenin in cytoplasm and nucleus was increased, which was consistent with the increase of phosphorylated GSK3 尾 -Ser9 and activated 尾 -catenin. RAGE inhibitor could partially reverse these findings and down-regulate 尾 -catenin target gene expression induced by TDI. Thirdly, blocking 尾 -catenin signal could reduce airway inflammation, airway hyperresponsiveness, airway inflammation, goblet metaplasia and collagen deposition in TDI asthmatic mice. The level of Th1/Th2 inflammatory mediators was decreased. Conclusion: first, the model of TDI asthma can be successfully established after sensitization and then stimulated by atomization inhalation; second, rage is involved in the pathogenesis of TDI asthma and participate in the stabilization of 尾 -catenin signal; third, 尾 -catenin is involved in regulating airway inflammation and airway remodeling of TDI asthma.
【学位授予单位】:南方医科大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:R562.25
【相似文献】
相关期刊论文 前10条
1 石磊;抗哮喘气道炎症药物的研究近况[J];浙江中西医结合杂志;2001年03期
2 倪伟;抗哮喘气道炎症药物的研究近况及对策[J];中国中医药信息杂志;2001年S1期
3 杨炯,涂海燕,李清泉;茶碱对哮喘气道炎症的作用(英文)[J];Acta Pharmacologica Sinica;2001年05期
4 高宝安;哮喘气道炎症与炎性细胞凋亡[J];山西医药杂志;2002年03期
5 李寅,马福家;一氧化氮与哮喘气道炎症实验研究[J];东南国防医药;2004年01期
6 王力宁;钟华;;中医药对哮喘气道炎症防治研究概况[J];四川中医;2006年06期
7 靳英丽;李琦;韩军;鲁继荣;;过氧化物酶体增殖物激活受体γ在哮喘气道炎症中的作用[J];中国实验诊断学;2007年09期
8 毛山;痰液分析在哮喘气道炎症研究中的应用[J];国外医学.呼吸系统分册;1996年04期
9 张伟;哮喘气道炎症的非创伤性检测[J];国外医学.呼吸系统分册;1997年03期
10 邓火金,陈晶,孙滨;哮喘气道炎症非创伤性监测方法的探讨[J];医师进修杂志;1998年12期
相关会议论文 前8条
1 廖华;陈荣昌;;呼吸道病毒感染对哮喘气道炎症的影响[A];中华医学会呼吸病学年会——2013第十四次全国呼吸病学学术会议论文汇编[C];2013年
2 华雯;夏丽霞;田宝平;金嫣;陈志华;李雯;沈华浩;;细胞自噬在哮喘气道炎症和嗜酸粒细胞分化中的作用研究[A];中华医学会呼吸病学年会——2013第十四次全国呼吸病学学术会议论文汇编[C];2013年
3 杨悦;陈平;;哮喘气道炎症与COX-2表达[A];第七届全国老年医学学术会议暨海内外华人老年医学学术会议论文汇编[C];2004年
4 甄国华;康冠楠;顾乃兵;赵建平;徐永健;张珍祥;;Intelectin在哮喘气道炎症中的作用[A];中华医学会第七届全国哮喘学术会议暨中国哮喘联盟第三次大会论文汇编[C];2010年
5 李亚男;卢清华;成焕吉;;柔嫩梭菌诱导Treg活化在哮喘气道炎症中的作用[A];中华医学会第十三届全国儿科呼吸学术会议论文汇编[C];2012年
6 席云祝;樊慧珍;于化鹏;邓火金;夏虎;龚雨新;;caspase-1活化在哮喘气道炎症中的作用[A];中华医学会呼吸病学年会——2013第十四次全国呼吸病学学术会议论文汇编[C];2013年
7 鲍燕敏;刘灿霞;郑跃杰;王莉;刘萍;;呼出气一氧化氮对儿童哮喘气道炎症水平评估作用的前瞻性研究[A];中华医学会第十七次全国儿科学术大会论文汇编(上册)[C];2012年
8 鲍燕敏;刘灿霞;郑跃杰;王莉;刘萍;;呼出气一氧化氮对儿童哮喘气道炎症水平评估作用的前瞻性研究[A];中华医学会第十三届全国儿科呼吸学术会议论文汇编[C];2012年
相关重要报纸文章 前3条
1 胡德荣;上海瑞金医院揭示哮喘气道炎症中的抗炎新机制[N];中国医药报;2007年
2 衣晓峰;李建辉;测ECP可评估哮喘气道炎症[N];中国医药报;2003年
3 张超群;范晓莉;NO对哮喘气道炎症具有调控作用[N];中国医药报;2004年
相关博士学位论文 前10条
1 李鸿佳;槲皮素通过TLR4/NF-κB信号调节哮喘气道炎症机制研究[D];山东大学;2015年
2 廉倩倩;胸腺免疫抑制五肽TIPP的抗哮喘气道炎症作用及其机制研究[D];山东大学;2015年
3 姚利红;晚期糖基化终末产物受体通过稳定β-catenin信号参与调控TDI哮喘气道炎症[D];南方医科大学;2017年
4 王彰晖;哮喘气道炎症中的肺局部淋巴细胞的记忆[D];四川大学;2004年
5 韩伟;过氧化物酶体增殖物活化受体γ在哮喘气道炎症和重建中的作用[D];复旦大学;2006年
6 乔峗;龙,
本文编号:1855813
本文链接:https://www.wllwen.com/shoufeilunwen/yxlbs/1855813.html